
Dependable Systems

Design for Dependability:

Fault Detection / Fault Tolerance

Luca Cassano
luca.cassano@polimi.it
cassano.faculty.polimi.it/ds.html

Most of the material of these slides has been provided by Prof. Cristiana Bolchini, Politecnico di Milano, Italy

TOPIC
QUESTIONS

How can we detect and handle the

occurrence of faults?

What technique is more effective?

What are the costs?

Fault Management

Fault management strategies

Fault avoidance
preventing faults from entering the system during design phase
(this should be the goal of the entire design process)

Fa
u

lt
 m

an
ag

e
m

e
n

t

Fault management strategies

Fault avoidance
preventing faults from entering the system during design phase
(this should be the goal of the entire design process)

Fault detection
Identification of fault occurrence within the operational system
during normal functioning

Fa
u

lt
 m

an
ag

e
m

e
n

t

Fault management strategies

Fault avoidance
Preventing faults from entering the system during design phase
(this should be the goal of the entire design process)

Fault detection
Identification of fault occurrence within the operational system
during normal functioning

Masking Redundancy (Fault tolerance)
The system is equipped with additional resources to tolerate the
occurrence of faults; these resources are always on

Fa
u

lt
 m

an
ag

e
m

e
n

t

Fault management strategies

Fault avoidance
Preventing faults from entering the system during design phase
(this should be the goal of the entire design process)

Fault detection
Identification of fault occurrence within the operational system
during normal functioning

Masking Redundancy (Fault tolerance)
The system is equipped with additional resources to tolerate the
occurrence of faults; these resources are always on

Dynamic Redundancy (Fault tolerance)
The system is equipped with additional resources to tolerate the
occurrence of faults; these resources can be switched on when
needed

Fa
u

lt
 m

an
ag

e
m

e
n

t

Considered approaches

Redundancy techniques

– Space/Hardware and time

– Information

Space/Hardware and Time Redundancy

TOPIC
QUESTIONS

How can I use additional

resources/processing to

detect/manage faults/errors?

How do I protect processing/data

from the outside?

Space Redundancy

Area (or Space or Hardware) Redundancy

Additional modules, not necessary for performing the “nominal” device
functionality, are introduced

From the design point of view, the approach is the one requiring the
lowest effort

Space Redundancy | 2

Passive redundancy

– fault masking

Active redundancy techniques

– detection, localization, containment, recovery

Hybrid redundancy techniques

– static & dynamic

– fault masking & reconfiguration

Space Redundancy | 3

Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same
inputs and their outputs are compared for mismatch

Space Redundancy | 3

Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same
inputs and their outputs are compared for mismatch

Space Redundancy | 3

Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same
inputs and their outputs are compared for mismatch

Space Redundancy | 3

Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same
inputs and their outputs are compared for mismatch

Space Redundancy | 4

Duplication With Comparison (DWC)

Applied at various abstraction levels:

– Module M is a circuit element
(an adder, a multiplier, …)

– Module M is a processor
(Dual processor architectures)

Space Redundancy | 5

Duplication With Comparison (DWC)

Costs/Benefits:

– Area: More than twice the original area

– Checker design: Two-Rail Code Checkers

– Performance: no degradation

– Effort: low

Space Redundancy | 6

N-Modular redundancy

N replicas of the same module are fed with the same inputs
and their outputs are compared and voted to produce the
output

Implementation of the M-out-of-N systems

– The system survives if there are M out of N working
modules

Space Redundancy | 7

N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy
(TMR)

Space Redundancy | 7

N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy
(TMR)

Space Redundancy | 7

N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy
(TMR)

Space Redundancy | 7

N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy
(TMR)

RTMR(t) = Rvoter(t) (3R(t) + R3(t) – 3R2(t))

Space Redundancy | 8

N-Modular redundancy

Application at system level or at module level

Space Redundancy | 8

N-Modular redundancy

Application at system level or at module level

Standby Sparing

When a fault is detected the system reconfigures itself to use one of
the redundant modules

Space Redundancy | 9

Standby sparing

Hot standby

– all modules are powered up

– spares can be switched into use immediately after the
primary module becomes failed

Cold standby

– the primary modules are powered up

– the spares are powered down, and then are powered up and
switched into use when the primary modules fail

Warm standby

Standby sparing | 2

Various fault detection or error detection schemes are
used to determine whether a module has become faulty

Fault location is used to determine exactly which module,
if any, is faulty

Standby sparing | 3

The reconfiguration can be viewed as a switch

Can bring a system back to full operation after the
occurrence of a fault

Require momentary cost in performance when
reconfiguration is performed

Space Redundancy | 10

Pair-and-a-spare

There is both fault masking and dynamic reconfiguration to cope with
faulty modules

Space Redundancy | 11

Pair-and-a-spare

Combine the features in standby sparing and
duplication with comparison

2 modules are operated in parallel at all times
and their results are compared to provide the
error protection capability

The error signal from the comparison is used to
initiate the reconfiguration process (switch) that
removes faulty modules and replaces them with
spares

Time redundancy

All the concepts seen so far related to area/hardware
redundancy can be applied to time redundancy

The application is executed multiple times and the results are
checked…

Adopted for temporary, not permanent faults

In not “real-time” systems

Information Redundancy

TOPIC
QUESTIONS

How can I modify data itself to

allow for error detection/correction?

How do I protect (stored) data?

Information Redundancy

To detect/tolerate errors, additional information is introduced into data,
allowing detection/tolerance

Information Redundancy

To detect/tolerate errors, additional information is introduced into data,
allowing detection/tolerance

Information coding

Redundant Array of Independent Disks (RAID) :: for larger data structures

Information coding

Information Redundancy

Data production

System

Code
Generator

Input data Output data

Code

Protected/encoded data

Information Redundancy

Data usage

System

Code
Generator

Protected data

Input data

Code

Output data

Code Checker

Ok/fail

Information Redundancy | 2

Partition the set of possible configurations in
codewords and non-codewords

– In a fault-free situation data is a
codeword

– In a faulty situation data is a non-
codeword

Information Redundancy | 2

Partition the set of possible configurations in
codewords and non-codewords

– In a fault-free situation data is a
codeword

– In a faulty situation data is a non-
codeword

Fault detection

Information Redundancy | 3

Associated with the adoption of a code, there must be a synthesis
strategy to guarantee that faults cause only detectable errors, according
to the adopted code

In other words, faults may cause data to be a non-codeword

Information Redundancy | 4

Combinational circuits

– Output encoding

– Input encoding
allows covering faults on primary inputs

Sequential circuits

– Next-state function

– Output function

Error Detecting Codes (EDC)

Allow the detection of a fault when it produces an error

– Parity Bit

– Berger

– m-out-of-n

– checksum (single/double precision, residue, Honeywell, …)

– Cyclic codes

– Arithmetic codes

Parity Bit code

Least redundant bit is used to code the remaining bits

Odd parity bit is 1 if data contains an even number of ones

Even parity bit is 1 if data contains an odd number of ones

Parity on the encoded information

– Odd parity: 1000101

– Odd parity: 1010100

– Even parity: 1000100

– Even parity: 1100101

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

Parity Bit code

Fault detection:

– odd: 10001001

– even: 10001000

– odd: 10101001

– even: 10101000

Parity Bit code

Fault detection:

– odd: 10001001

– even: 10001000

– odd: 10101001

– even: 10101000

Parity check mismatch!

Error detected!

Should be 0

Should be 1

Parity Bit code

Fault detection:

– odd: 10001001

– even: 10001000

– odd: 10101001

– even: 10101000

– odd: 10001000

– even: 10001001

Parity check mismatch!

Error detected!

Parity check mismatch!

Error detected!

Should be 1

Should be 0

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

What about multiple faults?

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

– odd: 10010001

– even: 10010000

No parity check mismatch!

Error undetected!

Should be 1

Should be 0

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

– odd: 10010001

– even: 10010000

– odd: 10011000

– even: 10011001

No parity check mismatch!

Error undetected!

No parity check mismatch!

Error undetected!

Should be 0

Should be 1

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

– odd: 00010001

– even: 00010000

Parity check mismatch!

Error detected!

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

– odd: 00010001

– even: 00010000

– odd: 11011000

– even: 11011001

Parity check mismatch!

Error detected!

Parity check mismatch!

Error detected!

Parity Bit code

Examples:

– odd: 10001001

– even: 10001000

What about multiple faults?

Single parity bit detects an

odd number of faults

Berger code

Code bits encode the number
of 0s in the information bits

Costs varies with information size

Berger code

Code bits encode the number
of 0s in the information bits

Costs varies with information size

Berger code

Code bits encode the number
of 0s in the information bits

Costs varies with information size

Able to detect any number

of unidirectional faults

Berger code

Code bits encode the number
of 0s in the information bits

Costs varies with information size

unidirectional faults: only

0s becoming 1s

or 1s becoming 0s

Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered

Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered

Number of 0s keeps

unaltered and count increases

Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered

Number of 0s keeps

unaltered and count increases

Number of 0s decreases

and count increases

Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered

Number of 0s keeps

unaltered and count increases

Number of 0s decreases

and count increases

unidirectional faults are

always detected

Berger code

Examples:

• 0010 011

• 0001 011

• 0101 011

• 0001 001

• 1010 010

bidirectional faults may

be undetected

m-out-of-n code

Given m-bit data strings, n-bit keys are added so that the number of 1s (or
0s) in the resulting bit string is constant

m-out-of-n code

Given m-bit data strings, n-bit keys are added so that the number of 1s (or
0s) in the resulting bit string is constant

d1 d2 d3 k1 k2 k3

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 0 0 0

Error Correcting Codes (ECC)

Allow also to correct a non-codeword, identifying the
codeword corrupted by the error

Error Correcting Codes (ECC)

Allow also to correct a non-codeword, identifying the
codeword corrupted by the error

Given a non-codeword nc there is only one codeword c
such that an error transforms c in nc…

– Hamming

– BCH

– Reed-Solomon & Reed-Muller,

– Binary Golay,

– convolutional & turbo

Hamming code

Detects double errors (2 erroneous bits), correct single errors

Introduces additional check bits, each one checking a subset of the
information bits

Each check bit computes the parity

Several versions exist:

• 1bit data + 2bit check

• 4bit data + 3bit check

• 11bit data + 4bit check

• …

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

• Parity bit 2 covers all bit positions which have the second least
significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

• Parity bit 2 covers all bit positions which have the second least
significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.

• Parity bit 4 covers all bit positions which have the third least significant
bit set to 1 => bits 4–7, 12–15, 20–23, etc.

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

• Parity bit 2 covers all bit positions which have the second least
significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.

• Parity bit 4 covers all bit positions which have the third least significant
bit set to 1 => bits 4–7, 12–15, 20–23, etc.

• …

• In general each parity bit covers all bits where the bitwise AND of the
parity position and the bit position is non-zero.

Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

• Parity bit 2 covers all bit positions which have the second least
significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.

• Parity bit 4 covers all bit positions which have the third least significant
bit set to 1 => bits 4–7, 12–15, 20–23, etc.

• …

• In general each parity bit covers all bits where the bitwise AND of the
parity position and the bit position is non-zero.

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be:

1 2 3 4 5 6 7

P1 P2 1 P3 0 1 0

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be:

P1=EvenParity(P1,1,0,0) => P1 = 1

1 2 3 4 5 6 7

P1 P2 1 P3 0 1 0

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be:

P2=EvenParity(P2,1,1,0) => P2 = 0

1 2 3 4 5 6 7

1 P2 1 P3 0 1 0

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be:

P3=EvenParity(P3,0,1,0) => P3 = 1

1 2 3 4 5 6 7

1 0 1 P3 0 1 0

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string is:

1 2 3 4 5 6 7

1 0 1 1 0 1 0

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,1,0)=0

EvenParity(4,5,6,7)=EvenParity(1,0,1,0)=0

1 2 3 4 5 6 7

1 0 1 1 0 1 0

No fault occurred

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,0,0)=1

EvenParity(4,5,6,7)=EvenParity(1,0,0,0)=1

1 2 3 4 5 6 7

1 0 1 1 0 0 0

Fault occurred in position 6

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(1,1,1,0)=1

EvenParity(4,5,6,7)=EvenParity(1,0,1,0)=0

1 2 3 4 5 6 7

1 1 1 1 0 1 0

Fault occurred in position 2

Hamming code | 3

Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(0,1,1,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,1,0)=0

EvenParity(4,5,6,7)=EvenParity(1,1,1,0)=1

1 2 3 4 5 6 7

0 0 1 1 1 1 0

Double faults detected
but not corrected

Sequential circuits

Encoding of the next-state and of the output function of sequential
circuits

Redundant Array of
Independent Disks
(RAID)

RAID

Multiple Hard Disks are deployed to introduce data redundancy

Several versions of RAID have been proposed

RAID 1

Simply two (or more) mirrored hard disks

The more mirrors, the more reliability

Low scalability

The slowest disk affects the speed of the entire
system

RAID 2

Data is bit-wise partitioned among
disks

Additional disks for hamming code
bits are added

RAID 3

Data is Byte-wise partitioned
among disks

An additional disk for parity is
added

RAID 4

Like RAID 3 but data is block-wise
partitioned among disks

An additional disk for parity is added

RAID 5

Like RAID 4, data is block-wise
partitioned among disks

Parity is distributed among disks

RAID 6

Like RAID 5 but with double parity
distributed among disks

TOPIC
QUESTIONS

How can we handle the occurrence

of faults?

Is there a more appropriate kind of

redundancy than others?

What technique is more effective?

What are the costs?

TOPICS

Key: Redundancy

Techniques exploiting different

kinds of redundancy

Relevant aspects: costs,

performance, power, fault coverage

