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TOPIC
QUESTIONS

How can we detect and handle the 

occurrence of faults?

What technique is more effective?

What are the costs?



Fault Management



Fault management strategies

Fault avoidance
preventing faults from entering the system during design phase 
(this should be the goal of the entire design process)
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Fault avoidance
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Identification of fault occurrence within the operational system 
during normal functioning
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The system is equipped with additional resources to tolerate the 
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Fault management strategies

Fault avoidance
Preventing faults from entering the system during design phase 
(this should be the goal of the entire design process)

Fault detection
Identification of fault occurrence within the operational system 
during normal functioning

Masking Redundancy (Fault tolerance)
The system is equipped with additional resources to tolerate the 
occurrence of faults; these resources are always on

Dynamic Redundancy (Fault tolerance)
The system is equipped with additional resources to tolerate the 
occurrence of faults; these resources can be switched on when 
needed 
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Considered approaches

Redundancy techniques

– Space/Hardware and time

– Information 



Space/Hardware and Time Redundancy



TOPIC
QUESTIONS

How can I use additional 

resources/processing to 

detect/manage faults/errors?

How do I protect processing/data 

from the outside?



Space Redundancy

Area (or Space or Hardware) Redundancy

Additional modules, not necessary for performing the “nominal” device 
functionality, are introduced

From the design point of view, the approach is the one requiring the 
lowest effort



Space Redundancy | 2

Passive redundancy 

– fault masking

Active redundancy techniques 

– detection, localization, containment, recovery 

Hybrid redundancy techniques 

– static & dynamic 

– fault masking & reconfiguration



Space Redundancy | 3

Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same 
inputs and their outputs are compared for mismatch
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Duplication With Comparison (DWC)

Two replicas of the nominal module receive the same 
inputs and their outputs are compared for mismatch
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Duplication With Comparison (DWC)

Applied at various abstraction levels:

– Module M is a circuit element
(an adder, a multiplier, …)

– Module M is a processor 
(Dual processor architectures) 
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Duplication With Comparison (DWC)

Costs/Benefits:

– Area: More than twice the original area

– Checker design: Two-Rail Code Checkers

– Performance: no degradation

– Effort: low



Space Redundancy | 6

N-Modular redundancy

N replicas of the same module are fed with the same inputs 
and their outputs are compared and voted to produce the 
output

Implementation of the M-out-of-N systems

– The system survives if there are M out of N working 
modules
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N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy 
(TMR)
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N-Modular redundancy

N = 3 is the smallest realization, called Triple Modular Redundancy 
(TMR)

RTMR(t) = Rvoter(t) (3R(t) + R3(t) – 3R2(t))



Space Redundancy | 8

N-Modular redundancy

Application at system level or at module level
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N-Modular redundancy

Application at system level or at module level



Standby Sparing

When a fault is detected the system reconfigures itself to use one of 
the redundant modules

Space Redundancy | 9



Standby sparing

Hot standby

– all modules are powered up 

– spares can be switched into use immediately after the 
primary module becomes failed

Cold standby

– the primary modules are powered up

– the spares are powered down, and then are powered up and 
switched into use when the primary modules fail

Warm standby



Standby sparing | 2

Various fault detection or error detection schemes are 
used to determine whether a module has become faulty

Fault location is used to determine exactly which module, 
if any, is faulty
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The reconfiguration can be viewed as a switch

Can bring a system back to full operation after the 
occurrence of a fault

Require momentary cost in performance when 
reconfiguration is performed
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Pair-and-a-spare

There is both fault masking and dynamic reconfiguration to cope with 
faulty modules 
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Pair-and-a-spare

Combine the features in standby sparing and 
duplication with comparison

2 modules are operated in parallel at all times 
and their results are compared to provide the 
error protection capability

The error signal from the comparison is used to 
initiate the reconfiguration process (switch) that 
removes faulty modules and replaces them with 
spares



Time redundancy

All the concepts seen so far related to area/hardware 
redundancy can be applied to time redundancy

The application is executed multiple times and the results are 
checked…

Adopted for temporary, not permanent faults 

In not “real-time” systems



Information Redundancy



TOPIC
QUESTIONS

How can I modify data itself to 

allow for error detection/correction?

How do I protect (stored) data?



Information Redundancy

To detect/tolerate errors, additional information is introduced into data, 
allowing detection/tolerance



Information Redundancy

To detect/tolerate errors, additional information is introduced into data, 
allowing detection/tolerance

Information coding

Redundant Array of Independent Disks (RAID) :: for larger data structures



Information coding



Information Redundancy

Data production

System

Code 
Generator

Input data Output data

Code

Protected/encoded data



Information Redundancy

Data usage

System

Code 
Generator

Protected data

Input data

Code

Output data

Code Checker

Ok/fail
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Partition the set of possible configurations in 
codewords and non-codewords

– In a fault-free situation data is a 
codeword

– In a faulty situation data is a non-
codeword
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Partition the set of possible configurations in 
codewords and non-codewords

– In a fault-free situation data is a 
codeword

– In a faulty situation data is a non-
codeword

Fault detection
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Associated with the adoption of a code, there must be a synthesis 
strategy to guarantee that faults cause only detectable errors, according 
to the adopted code

In other words, faults may cause data to be a non-codeword
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Combinational circuits

– Output encoding

– Input encoding
allows covering faults on primary inputs

Sequential circuits

– Next-state function

– Output function



Error Detecting Codes (EDC)

Allow the detection of a fault when it produces an error

– Parity Bit

– Berger

– m-out-of-n

– checksum (single/double precision, residue, Honeywell, …)

– Cyclic codes

– Arithmetic codes



Parity Bit code

Least redundant bit is used to code the remaining bits

Odd parity bit is 1 if data contains an even number of ones

Even parity bit is 1 if data contains an odd number of ones

Parity on the encoded information

– Odd parity:  1000101

– Odd parity: 1010100

– Even parity: 1000100

– Even parity: 1100101



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000



Parity Bit code

Fault detection:

– odd:  10001001

– even: 10001000

– odd:  10101001

– even: 10101000



Parity Bit code

Fault detection:

– odd:  10001001

– even: 10001000

– odd:  10101001

– even: 10101000

Parity check mismatch!

Error detected!

Should be 0

Should be 1
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Fault detection:

– odd:  10001001

– even: 10001000

– odd:  10101001

– even: 10101000

– odd:  10001000

– even: 10001001

Parity check mismatch!

Error detected!

Parity check mismatch!

Error detected!

Should be 1

Should be 0



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

What about multiple faults?



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

– odd:  10010001

– even: 10010000

No parity check mismatch!

Error undetected!

Should be 1

Should be 0



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

– odd:  10010001

– even: 10010000

– odd:  10011000

– even: 10011001

No parity check mismatch!

Error undetected!

No parity check mismatch!

Error undetected!

Should be 0

Should be 1



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

– odd:  00010001

– even: 00010000

Parity check mismatch!

Error detected!



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

– odd:  00010001

– even: 00010000

– odd:  11011000

– even: 11011001

Parity check mismatch!

Error detected!

Parity check mismatch!

Error detected!



Parity Bit code

Examples:

– odd:  10001001

– even: 10001000

What about multiple faults?

Single parity bit detects an 

odd number of faults



Berger code

Code bits encode the number 
of 0s in the information bits

Costs varies with information size
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Berger code

Code bits encode the number 
of 0s in the information bits

Costs varies with information size

Able to detect any number 

of unidirectional faults



Berger code

Code bits encode the number 
of 0s in the information bits

Costs varies with information size

unidirectional faults: only

0s becoming 1s

or 1s becoming 0s



Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered
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Berger code

Examples:

• 0000 100

• 0001 100

• 1010 100

• 0000 110

• 0000 010

• 0100 101

• 0110 111

Number of 0s decreases

and count keeps unaltered

Number of 0s keeps 

unaltered and count increases

Number of 0s decreases 

and count increases

unidirectional faults are 

always detected



Berger code

Examples:

• 0010 011

• 0001 011

• 0101 011

• 0001 001

• 1010 010

bidirectional faults may

be undetected



m-out-of-n code

Given m-bit data strings, n-bit keys are added so that the number of 1s (or 
0s) in the resulting bit string is constant



m-out-of-n code

Given m-bit data strings, n-bit keys are added so that the number of 1s (or 
0s) in the resulting bit string is constant

d1 d2 d3 k1 k2 k3

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 0 0 0



Error Correcting Codes (ECC)

Allow also to correct a non-codeword, identifying the 
codeword corrupted by the error



Error Correcting Codes (ECC)

Allow also to correct a non-codeword, identifying the 
codeword corrupted by the error

Given a non-codeword nc there is only one codeword c
such that an error transforms c in nc…

– Hamming

– BCH

– Reed-Solomon & Reed-Muller, 

– Binary Golay, 

– convolutional & turbo



Hamming code

Detects double errors (2 erroneous bits), correct single errors

Introduces additional check bits, each one checking a subset of the 
information bits

Each check bit computes the parity

Several versions exist:

• 1bit data + 2bit check

• 4bit data + 3bit check

• 11bit data + 4bit check

• …



Hamming code | 2

Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word
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Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit 
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.
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significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.
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Bits of position 2k are check bits
(1, 2, 4, 8, 16, 32, 64, …)

Each parity bit calculates the parity for some of the bits in the code word

• Parity bit 1 covers all bit positions which have the least significant bit 
set to 1 => bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

• Parity bit 2 covers all bit positions which have the second least 
significant bit set to 1 => bits 2-3, 6-7, 10-11, etc.

• Parity bit 4 covers all bit positions which have the third least significant 
bit set to 1 => bits 4–7, 12–15, 20–23, etc.

• …

• In general each parity bit covers all bits where the bitwise AND of the 
parity position and the bit position is non-zero.
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be: 

1 2 3 4 5 6 7

P1 P2 1 P3 0 1 0
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be: 

P1=EvenParity(P1,1,0,0) => P1 = 1

1 2 3 4 5 6 7

P1 P2 1 P3 0 1 0
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be: 

P2=EvenParity(P2,1,1,0) => P2 = 0

1 2 3 4 5 6 7

1 P2 1 P3 0 1 0
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string will be: 

P3=EvenParity(P3,0,1,0) => P3 = 1

1 2 3 4 5 6 7

1 0 1 P3 0 1 0
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The encoded string is:

1 2 3 4 5 6 7

1 0 1 1 0 1 0
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,1,0)=0

EvenParity(4,5,6,7)=EvenParity(1,0,1,0)=0

1 2 3 4 5 6 7

1 0 1 1 0 1 0

No fault occurred
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,0,0)=1

EvenParity(4,5,6,7)=EvenParity(1,0,0,0)=1

1 2 3 4 5 6 7

1 0 1 1 0 0 0

Fault occurred in position 6
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(1,1,0,0)=0

EvenParity(2,3,6,7)=EvenParity(1,1,1,0)=1

EvenParity(4,5,6,7)=EvenParity(1,0,1,0)=0

1 2 3 4 5 6 7

1 1 1 1 0 1 0

Fault occurred in position 2
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Coding (example 4 data bits + 3 check bits)

Data to be coded: 1010

The received string is:

EvenParity(1,3,5,7)=EvenParity(0,1,1,0)=0

EvenParity(2,3,6,7)=EvenParity(0,1,1,0)=0

EvenParity(4,5,6,7)=EvenParity(1,1,1,0)=1

1 2 3 4 5 6 7

0 0 1 1 1 1 0

Double faults detected
but not corrected



Sequential circuits

Encoding of the next-state and of the output function of sequential 
circuits



Redundant Array of 
Independent Disks 
(RAID)



RAID

Multiple Hard Disks are deployed to introduce data redundancy

Several versions of RAID have been proposed



RAID 1

Simply two (or more) mirrored hard disks

The more mirrors, the more reliability

Low scalability

The slowest disk affects the speed of the entire 
system



RAID 2

Data is bit-wise partitioned among 
disks

Additional disks for hamming code 
bits are added



RAID 3

Data is Byte-wise partitioned 
among disks

An additional disk for parity is 
added



RAID 4

Like RAID 3 but data is block-wise 
partitioned among disks

An additional disk for parity is added



RAID 5

Like RAID 4, data is block-wise 
partitioned among disks

Parity is distributed among disks



RAID 6

Like RAID 5 but with double parity 
distributed among disks



TOPIC
QUESTIONS

How can we handle the occurrence 

of faults?

Is there a more appropriate kind of 

redundancy than others?

What technique is more effective?

What are the costs?



TOPICS

Key: Redundancy

Techniques exploiting different 

kinds of redundancy

Relevant aspects: costs, 

performance, power, fault coverage


