\ POLITECNICO

'/ MILANO 1863

Dependable Systems

Design for dependability:
HW / SW hardening

Luca Cassano
luca.cassano@polimi.it
cassano.faculty.polimi.it/ds.html

Most of the material of these slides has been provided by Prof. Cristiana Bolchini, Politecnico di Milano, Italy

TOPIC

QUESTIONS

How to harden computing
systems?

What hardware/software
techniques are available?

How can they be applied? Can
they be applied?

What coverage do they offer?

How difficult it is to apply them?

Working Scenario

The considered hw/sw system architecture

‘:%U POLITECNICO MILANO 1863

Working Scenario | 2

Advanced architectures:
— Multi-processor systems

» Several processors are connected through a common
communication channel to a shared memory

— Distributed systems

e Several nodes (processor, private memory and bus) are
connected through a message-exchange bus

527 POLITECNICO MILANO 1863

Working Scenario | 2

Advanced architectures:
— Multi-processor systems

» Several processors are connected through a common
communication channel to a shared memory

— Distributed systems

» Several nodes (processor, private memory and bus) are
connected through a message-exchange bus

Other kinds of contexts:
— Edge/Cloud/Fog computing
— Internet of Things (loT)
— Cyber-Physical Systems (CPS)

557 POLITECNICO MILANO 1863

Working Scenario | 3

Software functional structure

— Set of tasks that could be partitioned into two portions: critical
section and non-critical section

 Critical section: execution “area” producing sensible results for
the system dependability

— Worst case: all the tasks are included in the critical section

527 POLITECNICO MILANO 1863

Working Scenario | 3

Software functional structure

— Set of tasks that could be partitioned into two portions: critical
section and non-critical section

 Critical section: execution “area” producing sensible results for
the system dependability

— Worst case: all the tasks are included in the critical section

— Depending on the system, tasks are mapped and scheduled at
design-time or at run-time

527 POLITECNICO MILANO 1863

Working Scenario | 3

Software functional structure

— Set of tasks that could be partitioned into two portions: critical
section and non-critical section

 Critical section: execution “area” producing sensible results for
the system dependability

— Worst case: all the tasks are included in the critical section

— Depending on the system, tasks are mapped and scheduled at
design-time or at run-time

Hypothesis: the code is bug free

— A fault (temporary or permanent) affects the hardware and
detection/tolerance is performed by acting both on the hardware
and the software

POLITECNICO MILANO 1863

Different approaches

System architectures can be hardened at different levels of abstraction
— Hardware level
— Architecture level
— Process level
— Software instruction level

— ... a mix of the above approaches

527 POLITECNICO MILANO 1863

Different approaches | 2

Acting at lower level
— Lower error detection latency
— More diagnosis information
— Simpler recovery

‘:%U POLITECNICO MILANO 1863

Different approaches | 2

Acting at lower level
— Lower error detection latency
— More diagnosis information
— Simpler recovery

Acting at higher level
— More flexible solution
— Reduced design cost and complexity
— Possibility to exploit COTS components

557 POLITECNICO MILANO 1863

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

557 POLITECNICO MILANO 1863

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with

— Permanent vs. transient

557 POLITECNICO MILANO 1863

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with
— Permanent vs. transient

The various units of the processor are hardened independently
— Functional units (ALU, fetch unit, ...)
— Register files and memories

557 POLITECNICO MILANO 1863

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

557 POLITECNICO MILANO 1863

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories
— Information redundancy (E.g.: EDC, ECC)

557 POLITECNICO MILANO 1863

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories
— Information redundancy (E.g.: EDC, ECC)

An example of application of such approach is the Leon2-FT produced by
Gaisler for ESA: a SEU tolerant microprocessor where FFs are protected by
Triple Modular Redundancy and all internal and external memories are
protected by error correction codes or parity bits.

157 POLITECNICO MILANO 1863

Architecture-level hardening

The whole processor is replicated and its outputs are checked/voted

Some approaches:
— Fault detection
* Lock-Step Dual Processor
* Loosely-Synchronized Dual Processor
* Watchdog processor

— Fault tolerance
* TMR —Triple Modular Redundancy
* Dual Lock-Step Architecture

557 POLITECNICO MILANO 1863

Architecture-level hardening | 2

Lock-Step Dual Processor

— Two processors execute the same code being strictly
synchronized

— Bus and memories are protected with codes

— The interrupt controller is
specifically designed with fault
detection mechanisms

ENT CTL

CPU

|

Master

)

Debug Unit |

CPU Address

& DATA
Checker |
ceker ::> monitor

557 POLITECNICO MILANO 1863

Architecture-level hardening | 2

Lock-Step Dual Processor
— Two processors execute the same code being strictly
synchronized
— Bus and memories are protected with codes

— The interrupt controller is

specifically designed with fault
. . S
detection mechanisms E
. . . NT CTL ZA
The solution is called fail-silent _ EEL
. NS
architecture (corrupted data are not C:}E N T —
e m itted) g CPU é Address v
Checker :> f;];i:;‘:
— RAM

— Used as basic element for fault-
tolerant distributed systems

POLITECNICO MILANO 1863

Architecture-level hardening | 3

Example of Lock-Step Dual Processor: Xilinx Dual Lock-

Step Processor [
P
Isolatad Fusr?cl;jon AR Full Bus
{MBO Top) AX| Outputs Peripherals Isolated Function
- (Peripherals Top)
DVl LMB RAMs Primary
- “‘;‘f‘ﬂ;"fﬁf DDR3- 128 MB
AXI4 SDRAM DDR3
D Isolated Function e SDRAM
(MBO0 Top)
Companator Emors
4
MicroBlaze MicroBlaze 1 -*— Board LEDs
Processor n] Comparator == LED
Outputs L MicroBlaze| IF
] IMErTUDt | USE/
Gontroiler .| Rs232 Rs232
F Converter
ME Intermugpés Syst
Resat [1 Resat Board
AXI4-Lite Full Bus Push- 3
AXl4-Litz Outputs ™ tuttans Push-
VE buttons
L
5
H— = Board 3
" - = DIP
MicroBlaze MicroBlaze L [Switches DIP
Processor ME1 Comparator VE Switches
Outputs
Linear 32 MB
Data Secondary l==| Flash Parallel
Instr MicroBlaze VF Flash
Comparator
Isolated Function -""--TII‘HGF
DI LME RAMs (MBD Comparator
p——
MicroBlaze
Processor
Isolated Function
(MBA1 Top)
Spartan-& FPGA XCeSLX150TFGGETE-3
XEB4 0P DE1812

[:7) POLITECNICO MILANO 1863

Architecture-level hardening | 4

Loosely-synchronized dual processor

— Two processors run
independently

— The operating system is devoted
to inter-process communication,
synchronization and error
detection

POLITECNICO MILANO 1863

FLASH

I

CPUB
|iNT CTL

s
S 4
El
S |
S
3|
:I
= 1
|
-— 1
£ !
0
£+>
RAM FLASH

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms

527 POLITECNICO MILANO 1863

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms

— After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

527 POLITECNICO MILANO 1863

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms

— After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

— Two operational modes:

 Critical applications: loosely-synchronized architecture featuring
fault detection checks on synchronization

* Non critical tasks: dual-core architecture

POLITECNICO MILANO 1863

Architecture-level hardening | 6

Watchdog Processor

— The watchdog observes the behavior of the processor and
performs a high-level anomaly detection

* Execution statistics different from profiled ones (branch misses,
branch prediction, ...)

e Data values or memory addresses out of expected ranges

* Timeout expiration

1/O

527 POLITECNICO MILANO 1863

Architecture-level hardening | 7

TMR architecture
— Itis a lock-step solutions with three processors

B FLASH

CPU-A
Majority | : /\
Voter |

{

\/

CPU-B

Debue Unit

CPU-C

INT CTL

3l

527 POLITECNICO MILANO 1863

Architecture-level hardening | 8

Dual lock-step architecture

— Two dual lock-step nodes are
connected

— Each node is fail-silent
— Two operational modes:

* Fault detection for not-
critical tasks (each dual lock-
step executing a different
code)

* Fault tolerance for
critical tasks (both dual lock-

step executing the same code)
— This is a simple distributed system

POLITECNICO MILANO 1863

Debug Unit

Debug Unit

INT CTLJ

CPU A
Master

CPU A
Checker

CPUB
Checker

CPUB
Master

INT CTL

AN || R G A1)

RAM || FLASH
4 ;4
Address E :
& DATA © 1
monitor E I
< |

=

=

Address _.CE |
& DATA S |
monitor R
i

il "y
RAM FLASH

Architecture-level hardening | 9

Alternative solutions

— Memories can be shared between processor replicas, but...

— | CPU-A :D Address
FTL.ASH| FLLASH Checker & DATA FILASH|I FLASH
A B monitor A B
CPU-A ﬁ i B CPU-A ﬂ 1T
<::> Master |
S INT CTL<:£ =l [INT CTLQQ
= = = - — -
S|l CH% INT CTL<}ﬂ
. e
CPU-B

CFU-E II
ﬁ II Master II
RA

RAM | | RAM CPU-B Q‘E}dﬁ: M | | RAM
A B e :> mm;ito;' A B

[57) POLITECNICO MILANO 1863

Architecture-level hardening | 9

Alternative solutions

— Memories can be shared between processor replicas, but...
— Issues with data protection in shared memory

A faulty task can corrupt data of the replica task

— | CPU-A ::> Address
FILASH| FLLASH Syl & DATA FLASH| FLLASH
A B monitor A B
CPU-A ﬁ B CPU-A ﬂ JL
S — Master |
2| [INT CTL o |INT CTL
o E = = - = =
ST CT’L% INT CTL<}ﬂ
CPU-B : : CFU-EB II
II II Master II
RAM | | RAM CPUB Address RAM | | RAM
S hecl & DATA
A B il :> monitor A B

Process-level hardening

Software processes can be replicated and the results compared

The operating system (or a hypervisor) manages the replicas’ execution
and result comparison, possibly by means of specific hardware
components

Heterogeneous reliability requirements:
— The system executes both hardened processes and plain ones

— Many applications may tolerate a certain number of errors
(e.g., image processing ones)

POLITECNICO MILANO 1863

Process-level hardening | 2

The approach is widely-used due to the increasing diffusion of multi-
core and many-core architectures

— Mix of both time and space redundancies

Redundancy can be applied

— At design time: replications are implemented in the source code
of the program

— At run-time: the operating system decides to replicate tasks

557 POLITECNICO MILANO 1863

Process-level hardening | 3

Issues:

— Isolation: a process cannot access memory spaces of other
replicas

— The operating system must expose some kind of fault detection
mechanisms

POLITECNICO MILANO 1863

Process-level hardening | 4

Various alternatives:

— Run the same program or run diversified copies of the program
(SW diversity)

* aorb € not(not(a) and not(b)), a+b <=2 a—(—b)
— Check intermediate results

Master App 11 app App || Redundant
Process | - Processes
Libs ‘|| Libs Libs ||

| —
“~ | Syscall Emulation =~ Watchdog
* + Alarm

Operating System

527 POLITECNICO MILANO 1863

Mixed-level hardening

Mixed approaches can also be used:
— Fault detection is achieved at architectural-level
— Fault tolerance at process-level

The approach is mainly used on distributed systems

Approaches:
— Process replication
— Process re-execution
— Checkpointing
— Instruction-level hardening

527 POLITECNICO MILANO 1863

Mixed-level hardening | 2

Process replication

— Faults are detected by the architecture that does not return any
result (fail-silent) or that raises a warning

— Returned results are correct (at least we need results from one
replica)

Process re-execution
— When a fault is detected, the process is re-started

527 POLITECNICO MILANO 1863

Mixed-level hardening | 3

Checkpointing

— The operating system (or a HW mechanism) performs periodic
checkpointing of the status

— When a fault is detected, the status of the system is restored to the
previous checkpointing

557 POLITECNICO MILANO 1863

Instruction-level hardening

Time and information redundancy can be applied in the software at
instruction level

It is possible to act on both the source code or the assembler one

527 POLITECNICO MILANO 1863

Instruction-level hardening | 2

Instructions types
— Data: they perform an elaboration
e Assignment, sum, and, or, less then, equal,...

— Control: they allow the modification of the linear flow of the
execution

* Conditional instructions, loops (with initial condition, with final
condition, with counting), calls.

It is necessary to manage both the execution and the data flows

527 POLITECNICO MILANO 1863

Instruction-level hardening | 3

Fault modeled as:

¥
— Ccorru ption of the Instructifn fetch
execution of a single step Instruction decode
— corruption of a stored '
Parameters read
value |
Execution
.
Effe cts: Result storing
— erroneous execution of Mext instruction computation
|

workflow
— data errors

Instruction-level hardening | 4

Errors while executing data instructions

Corrupted phase

© Instruction fetch

o Instruction decode

Generated errors

o A data processing instruction is transformed into:
0O another data processing instruction: a wrong result is produced
O a control instruction: an erroneous jump to a random target is performed
= in the same basic block, or
= in a different basic block

© Parameters read
© Execution

© Result storing

© Instruction execution leads to a wrong result that is stored in memory

o Next instruction
computation

© An erroneous jump to a random instruction occurs:
O in the same basic block, or
O in a different basic block

POLITECNICO MILANO 1863

Instruction-level hardening | 4

Errors while executing data instructions

Corrupted phase Generated errors
© Instruction fetch o A data processing instruction is transformed into:
) 0O another data processing instruction: a wrong result is produced
© Instruction decode O a control instruction: an erroneous jump to a random target is performed
= in the same basic block, or
= in a different basic block

© Parameters read © Instruction execution leads to a wrong result that is stored in memory

© Execution

© Result storing

o MNext instruction © An erroneous jump to a random instruction occurs:
computation O in the same basic block, or
O in a different basic block

POLITECNICO MILANO 1863

Instruction-level hardening | 4

Errors while executing data instructions

Corrupted phase

Generated errors

© Instruction fetch

o Instruction decode

© Parameters read

© Execution

© Result storing

o Next instruction
computation

o A data processing instruction is transformed into:
0O another data processing instruction: a wrong result is produced
O a control instruction: an erroneous jump to a random target is performed
= in the same basic block, or
= in a different basic block

© Instruction execution leads to a wrong result that is stored in memory

© An erroneous jump to a random instruction occurs:
O in the same basic block, or
O in a different basic block

POLITECNICO MILANO 1863

Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase Generated errors

© Instruction fetch o The control instruction is transformed into:
) 0O a data processing instruction: a wrong result is produced and no jump is performed
o Instruction decode o another control instruction: an erroneous jump to a random target is performed

& in the same basic block, or
e in a different basic block

o Parameters read o Jump target computation error: an erroneous jump to a random instruction occurs:
. o in the same basic block, or
O Execution O in a different basic block

o Mext instruction © Branch direction evaluation error: wrong branch direction is taken

computation o The execution of a jump instruction is affected: no jump is performed

o Result storing o Mo instruction is performed: the fault causes no error because it is not activated

POLITECNICO MILANO 1863

Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase

Generated errors

© Instruction fetch

o Instruction decode

© Parameters read

O Execution

O Mext instruction
computation

o Result storing

o The control instruction is transformed into:
0O a data processing instruction: a wrong result is produced and no jump is performed
O another control instruction: an erroneous jump to a random target is performed
& in the same basic block, or
e in a different basic block

o Jump target computation error: an erroneous jump to a random instruction occurs:
o in the same basic block, or
o in a different basic block

o Branch direction evaluation error: wrong branch direction is taken

o The execution of a jump instruction is affected: no jump is performed

o Mo instruction is performed: the fault causes no error because it is not activated

POLITECNICO MILANO 1863

Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase

Generated errors

© Instruction fetch

o Instruction decode

© Parameters read

O Execution

O Mext instruction
computation

o The control instruction is transformed into:
0O a data processing instruction: a wrong result is produced and no jump is performed
O another control instruction: an erroneous jump to a random target is performed
& in the same basic block, or
e in a different basic block

o Jump target computation error: an erroneous jump to a random instruction occurs:
o in the same basic block, or
o in a different basic block

o Branch direction evaluation error: wrong branch direction is taken

o The execution of a jump instruction is affected: no jump is performed

POLITECNICO MILANO 1863

Instruction level hardening | 3

Data instructions

— Instructions are duplicated and results are compared duplication
and comparison

— The technique implies that all variables must be duplicated
— Example:

Original code Modified Code
int a,b; int a,. by, a1, bi;

a = b; N bg;

8] bi;

if (b, !'= by}
errori) ;

a=>bk + o Ag ba + ©o;

=81 b]_ + 24

1f((bo!=b;) | | (ogl=c1))
error i) ;

POLITECNICO MILANO 1863

Instruction level hardening | 4

Data instructions (cont.)
— Selective instruction duplication

* |dentification of the trade-off between the reliability level and
performance degradation

1. Code Reliability Analysis
2. Code reordering
3. Selective Variable duplication

557 POLITECNICO MILANO 1863

Instruction level hardening | 5

Selective instruction duplication (cont.)
— Code Reliability Analysis
* Each variable is associated with a reliability-weight:

— The longer the lifetime the higher the probability of being
corrupted

— The more is the number of descendents the higher is the
number of variables on which an erroneous value could be
propagated

— Code reordering

* Functional equivalent code but with and improved global
reliability weight

— Selective variable duplication

POLITECNICO MILANO 1863

Instruction level hardening | 6

Control instructions
— Main concept: Basic Block (BB)

* basic block is a sequence of program statements that contains
no labels and no branches
from this definition a BB can only be executed completely and

in sequence
BB 1
BB 2 BB 3

Instruction level hardening | 7

Control instructions (cont.)
— A program can be described by a sequence of BBs
— Control Flow Errors are:
* illegal branches
* wrong branches
* branches in the middle of a BB
* branches from the middle of a BB

557 POLITECNICO MILANO 1863

Instruction level hardening | 8

Control instructions (cont.)
— Two signatures are introduced to control if
* the BB has been successfully completed

* The control flow jumps from the end of a BB to the beginning of
a correct BB

— The two signatures are:
* afirst instruction is introduced at the beginning of each BB
* asecond one is inserted at the end of the BB

557 POLITECNICO MILANO 1863

Instruction level hardening | 9

Control instructions (cont.)
— Logic schema: intra-block signature
 |dentify erroneous jumps

Global execution check flag
e.g.gef=5

Call instruction to a
routine (ENTRY)

Block 1

Consistency check
e.g. if(gef !=5) error();

Call instruction to a
routine (EXIT)

Block 2 Block 3

POLITECNICO MILANO 1863

Instruction level hardening | 10

Procedure duplication

— The body of the procedure is hardened

Procedure call duplication

Original code

Modified code

int res,a;

rezs = search

(a);

int search

(int pj

{ int q;
q=p + 1;

returnil) ;

1

int resg,, res,, ag, ai;

gearch({a,, a,,
Eres,, &res,);

void search{int pg,int
Pi1,1int *r,,int *r,)
{ int g, du;

gy = P + 1
“_:IJ.=P1+1-'

*ry = 1;
*r; = 1;
return;

}

— The procedure is called twice with the original parameter and

the replicated ones

[57) POLITECNICO MILANO 1863

Application-level fault detection/management

Working scenario

Image Processing and Machine Learning
for perception and decision tasks in
mission/-safety-critical systems

(o | -9~
L)
LA
KN
4 ""

POLITECNICO MILANO 1863

Application-level fault detection/management

GOAL: reduce reliability-related costs

STRATEGY: avoid re-computation when the
corrupted output can still be used, exploiting

context inherent tolerance to some degree of correct/corrupted
inexactness Vs,
usable/unusable

APPROACH: evaluate the produced output
(final or intermediate) w.r.t. a “usability”
concept and re-process it only if strictly
necessary

557 POLITECNICO MILANO 1863

Application-level fault detection/management

Example application
Building identification in aerial pictures

[©F20S]MicrosofiiGorporstion)

POLITECNICO MILANO 1863

Application-level fault detection/management

corrupted/usable

POLITECNICO MILANO 1863

Application-level fault detection/management

Strategy: innovative lightweight fault
impact management

-~ ~N
p.

() processing ot
processing out;ut input / =
input ~ p N 6%
() o7 exact replica = D[Usable/
exact replica — correct/ \ J O unusable
\) corrupted
> CNN-based

usability-oriented
flexible checking

.

> Traditional redundancy

527 POLITECNICO MILANO 1863

TOPIC

QUESTIONS

How to harden computing
systems?

What hardware/software
techniques are available?

How can they be applied? Can
they be applied?

What coverage do they offer?

How difficult it is to apply them?

The hardening of a system can be
performed at different abstraction
levels

TOPICS
Applicability

Trade-off w.r.t. various parameters

