
Dependable Systems

Design for dependability:

HW / SW hardening

Luca Cassano
luca.cassano@polimi.it
cassano.faculty.polimi.it/ds.html

Most of the material of these slides has been provided by Prof. Cristiana Bolchini, Politecnico di Milano, Italy

TOPIC
QUESTIONS

How to harden computing

systems?

What hardware/software

techniques are available?

How can they be applied? Can

they be applied?

What coverage do they offer?

How difficult it is to apply them?

Working Scenario

The considered hw/sw system architecture

microprocessor Memory (RAM, FLASH, …)

HW acceleratorsI/O

Working Scenario | 2

Advanced architectures:

– Multi-processor systems

• Several processors are connected through a common
communication channel to a shared memory

– Distributed systems

• Several nodes (processor, private memory and bus) are
connected through a message-exchange bus

Working Scenario | 2

Advanced architectures:

– Multi-processor systems

• Several processors are connected through a common
communication channel to a shared memory

– Distributed systems

• Several nodes (processor, private memory and bus) are
connected through a message-exchange bus

Other kinds of contexts:

– Edge/Cloud/Fog computing

– Internet of Things (IoT)

– Cyber-Physical Systems (CPS)

Working Scenario | 3

Software functional structure

– Set of tasks that could be partitioned into two portions: critical
section and non-critical section

• Critical section: execution “area” producing sensible results for
the system dependability

– Worst case: all the tasks are included in the critical section

Working Scenario | 3

Software functional structure

– Set of tasks that could be partitioned into two portions: critical
section and non-critical section

• Critical section: execution “area” producing sensible results for
the system dependability

– Worst case: all the tasks are included in the critical section

– Depending on the system, tasks are mapped and scheduled at
design-time or at run-time

Working Scenario | 3

Software functional structure

– Set of tasks that could be partitioned into two portions: critical
section and non-critical section

• Critical section: execution “area” producing sensible results for
the system dependability

– Worst case: all the tasks are included in the critical section

– Depending on the system, tasks are mapped and scheduled at
design-time or at run-time

Hypothesis: the code is bug free

– A fault (temporary or permanent) affects the hardware and
detection/tolerance is performed by acting both on the hardware
and the software

Different approaches

System architectures can be hardened at different levels of abstraction

– Hardware level

– Architecture level

– Process level

– Software instruction level

– … a mix of the above approaches

Different approaches | 2

Acting at lower level

– Lower error detection latency

– More diagnosis information

– Simpler recovery

Different approaches | 2

Acting at lower level

– Lower error detection latency

– More diagnosis information

– Simpler recovery

Acting at higher level

– More flexible solution

– Reduced design cost and complexity

– Possibility to exploit COTS components

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with

– Permanent vs. transient

Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with

– Permanent vs. transient

The various units of the processor are hardened independently

– Functional units (ALU, fetch unit, ...)

– Register files and memories

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)

– Space redundancy is mainly used (DWC,TMR)

– Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)

– Space redundancy is mainly used (DWC,TMR)

– Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories

– Information redundancy (E.g.: EDC, ECC)

Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)

– Space redundancy is mainly used (DWC,TMR)

– Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories

– Information redundancy (E.g.: EDC, ECC)

An example of application of such approach is the Leon2-FT produced by
Gaisler for ESA: a SEU tolerant microprocessor where FFs are protected by
Triple Modular Redundancy and all internal and external memories are
protected by error correction codes or parity bits.

Architecture-level hardening

The whole processor is replicated and its outputs are checked/voted

Some approaches:

– Fault detection

• Lock-Step Dual Processor

• Loosely-Synchronized Dual Processor

• Watchdog processor

– Fault tolerance

• TMR – Triple Modular Redundancy

• Dual Lock-Step Architecture

Architecture-level hardening | 2

Lock-Step Dual Processor

– Two processors execute the same code being strictly
synchronized

– Bus and memories are protected with codes

– The interrupt controller is
specifically designed with fault
detection mechanisms

Architecture-level hardening | 2

Lock-Step Dual Processor

– Two processors execute the same code being strictly
synchronized

– Bus and memories are protected with codes

– The interrupt controller is
specifically designed with fault
detection mechanisms

The solution is called fail-silent
architecture (corrupted data are not
emitted)

– Used as basic element for fault-
tolerant distributed systems

Example of Lock-Step Dual Processor: Xilinx Dual Lock-
Step Processor

Architecture-level hardening | 3

Architecture-level hardening | 4

Loosely-synchronized dual processor

– Two processors run
independently

– The operating system is devoted
to inter-process communication,
synchronization and error
detection

Loosely-synchronized dual processor (cont.)

– Synchronization mechanisms must be protected with specific
hardware/software mechanisms

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

– Synchronization mechanisms must be protected with specific
hardware/software mechanisms

– After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

– Synchronization mechanisms must be protected with specific
hardware/software mechanisms

– After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

– Two operational modes:

• Critical applications: loosely-synchronized architecture featuring
fault detection checks on synchronization

• Non critical tasks: dual-core architecture

Architecture-level hardening | 5

Architecture-level hardening | 6

Watchdog Processor

– The watchdog observes the behavior of the processor and
performs a high-level anomaly detection

• Execution statistics different from profiled ones (branch misses,
branch prediction, ...)

• Data values or memory addresses out of expected ranges

• Timeout expiration

Processor Memory

Watchdog
processor

I/O

TMR architecture

– It is a lock-step solutions with three processors

Architecture-level hardening | 7

Dual lock-step architecture

– Two dual lock-step nodes are
connected

– Each node is fail-silent

– Two operational modes:

• Fault detection for not-
critical tasks (each dual lock-
step executing a different
code)

• Fault tolerance for
critical tasks (both dual lock-
step executing the same code)

– This is a simple distributed system

Architecture-level hardening | 8

Alternative solutions

– Memories can be shared between processor replicas, but…

Architecture-level hardening | 9

Alternative solutions

– Memories can be shared between processor replicas, but…

– Issues with data protection in shared memory

• A faulty task can corrupt data of the replica task

Architecture-level hardening | 9

Process-level hardening

Software processes can be replicated and the results compared

The operating system (or a hypervisor) manages the replicas’ execution
and result comparison, possibly by means of specific hardware
components

Heterogeneous reliability requirements:

– The system executes both hardened processes and plain ones

– Many applications may tolerate a certain number of errors
(e.g., image processing ones)

Process-level hardening | 2

The approach is widely-used due to the increasing diffusion of multi-
core and many-core architectures

– Mix of both time and space redundancies

Redundancy can be applied

– At design time: replications are implemented in the source code
of the program

– At run-time: the operating system decides to replicate tasks

Process-level hardening | 3

Issues:

– Isolation: a process cannot access memory spaces of other
replicas

– The operating system must expose some kind of fault detection
mechanisms

Process-level hardening | 4

Various alternatives:

– Run the same program or run diversified copies of the program
(SW diversity)

• a or b → not(not(a) and not(b)) , a+b→ a – (– b)

– Check intermediate results

• Possibly implemented by monitoring system calls

Mixed-level hardening

Mixed approaches can also be used:

– Fault detection is achieved at architectural-level

– Fault tolerance at process-level

The approach is mainly used on distributed systems

Approaches:

– Process replication

– Process re-execution

– Checkpointing

– Instruction-level hardening

Mixed-level hardening | 2

Process replication

– Faults are detected by the architecture that does not return any
result (fail-silent) or that raises a warning

– Returned results are correct (at least we need results from one
replica)

Process re-execution

– When a fault is detected, the process is re-started

Mixed-level hardening | 3

Checkpointing

– The operating system (or a HW mechanism) performs periodic
checkpointing of the status

– When a fault is detected, the status of the system is restored to the
previous checkpointing

Instruction-level hardening

Time and information redundancy can be applied in the software at
instruction level

It is possible to act on both the source code or the assembler one

Instruction-level hardening | 2

Instructions types

– Data: they perform an elaboration

• Assignment, sum, and, or, less then, equal,…

– Control: they allow the modification of the linear flow of the
execution

• Conditional instructions, loops (with initial condition, with final
condition, with counting), calls.

It is necessary to manage both the execution and the data flows

Instruction-level hardening | 3

Fault modeled as:
– corruption of the

execution of a single step

– corruption of a stored
value

Effects:
– erroneous execution of

workflow

– data errors

Instruction-level hardening | 4

Errors while executing data instructions

Instruction-level hardening | 4

Errors while executing data instructions

Instruction-level hardening | 4

Errors while executing data instructions

Instruction-level hardening | 5

Errors while executing control instructions

Instruction-level hardening | 5

Errors while executing control instructions

Instruction-level hardening | 5

Errors while executing control instructions

Instruction level hardening | 3

Data instructions

– Instructions are duplicated and results are compared duplication
and comparison

– The technique implies that all variables must be duplicated

– Example:

Instruction level hardening | 4

Data instructions (cont.)

– Selective instruction duplication

• Identification of the trade-off between the reliability level and
performance degradation

1. Code Reliability Analysis

2. Code reordering

3. Selective Variable duplication

Instruction level hardening | 5

Selective instruction duplication (cont.)

– Code Reliability Analysis

• Each variable is associated with a reliability-weight:

– The longer the lifetime the higher the probability of being
corrupted

– The more is the number of descendents the higher is the
number of variables on which an erroneous value could be
propagated

– Code reordering

• Functional equivalent code but with and improved global
reliability weight

– Selective variable duplication

Instruction level hardening | 6

Control instructions

– Main concept: Basic Block (BB)

• basic block is a sequence of program statements that contains
no labels and no branches
from this definition a BB can only be executed completely and
in sequence

BB 1

BB 2 BB 3

Instruction level hardening | 7

Control instructions (cont.)

– A program can be described by a sequence of BBs

– Control Flow Errors are:

• illegal branches

• wrong branches

• branches in the middle of a BB

• branches from the middle of a BB

Instruction level hardening | 8

Control instructions (cont.)

– Two signatures are introduced to control if

• the BB has been successfully completed

• The control flow jumps from the end of a BB to the beginning of
a correct BB

– The two signatures are:

• a first instruction is introduced at the beginning of each BB

• a second one is inserted at the end of the BB

Instruction level hardening | 9

Control instructions (cont.)

– Logic schema: intra-block signature

• Identify erroneous jumps

Block 1

Block 2 Block 3

Call instruction to a

routine (ENTRY)

Call instruction to a

routine (EXIT)

Global execution check flag

e.g. gef = 5

Consistency check

e.g. if(gef != 5) error();

Instruction level hardening | 10

Procedure duplication

– The body of the procedure is hardened

Procedure call duplication

– The procedure is called twice with the original parameter and
the replicated ones

Application-level fault detection/management

Working scenario

Image Processing and Machine Learning
for perception and decision tasks in
mission/-safety-critical systems

Application-level fault detection/management

GOAL: reduce reliability-related costs

STRATEGY: avoid re-computation when the
corrupted output can still be used, exploiting
context inherent tolerance to some degree of
inexactness

APPROACH: evaluate the produced output
(final or intermediate) w.r.t. a “usability”
concept and re-process it only if strictly
necessary

correct/corrupted

vs.

usable/unusable

Application-level fault detection/management

Example application

Building identification in aerial pictures

Application-level fault detection/management

A

B

corrupted/usable

corrupted/unusable

Application-level fault detection/management

> CNN-based
usability-oriented
flexible checking

Strategy: innovative lightweight fault
impact management

> Traditional redundancy

TOPIC
QUESTIONS

How to harden computing

systems?

What hardware/software

techniques are available?

How can they be applied? Can

they be applied?

What coverage do they offer?

How difficult it is to apply them?

TOPICS

The hardening of a system can be

performed at different abstraction

levels

Applicability

Trade-off w.r.t. various parameters

