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TOPIC

QUESTIONS

How to harden computing
systems?

What hardware/software
techniques are available?

How can they be applied? Can
they be applied?

What coverage do they offer?

How difficult it is to apply them?




Working Scenario

The considered hw/sw system architecture
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Working Scenario | 2

Advanced architectures:
— Multi-processor systems

» Several processors are connected through a common
communication channel to a shared memory

— Distributed systems

e Several nodes (processor, private memory and bus) are
connected through a message-exchange bus
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Working Scenario | 2

Advanced architectures:
— Multi-processor systems

» Several processors are connected through a common
communication channel to a shared memory

— Distributed systems

» Several nodes (processor, private memory and bus) are
connected through a message-exchange bus

Other kinds of contexts:
— Edge/Cloud/Fog computing
— Internet of Things (loT)
— Cyber-Physical Systems (CPS)
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Working Scenario | 3

Software functional structure

— Set of tasks that could be partitioned into two portions: critical
section and non-critical section

 Critical section: execution “area” producing sensible results for
the system dependability

— Worst case: all the tasks are included in the critical section
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Working Scenario | 3

Software functional structure

— Set of tasks that could be partitioned into two portions: critical
section and non-critical section

 Critical section: execution “area” producing sensible results for
the system dependability

— Worst case: all the tasks are included in the critical section

— Depending on the system, tasks are mapped and scheduled at
design-time or at run-time

Hypothesis: the code is bug free

— A fault (temporary or permanent) affects the hardware and
detection/tolerance is performed by acting both on the hardware
and the software
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Different approaches

System architectures can be hardened at different levels of abstraction
— Hardware level
— Architecture level
— Process level
— Software instruction level

— ... a mix of the above approaches

527 POLITECNICO MILANO 1863




Different approaches | 2

Acting at lower level
— Lower error detection latency
— More diagnosis information
— Simpler recovery
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Different approaches | 2

Acting at lower level
— Lower error detection latency
— More diagnosis information
— Simpler recovery

Acting at higher level
— More flexible solution
— Reduced design cost and complexity
— Possibility to exploit COTS components
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Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)
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Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with

— Permanent vs. transient
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Hardware-level approaches

The processor structure is internally redesigned by applying hardening
techniques (fault detection / tolerance)

Specific techniques are selected w.r.t. the type of fault to deal with
— Permanent vs. transient

The various units of the processor are hardened independently
— Functional units (ALU, fetch unit, ...)
— Register files and memories

557 POLITECNICO MILANO 1863



Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)
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Hardware-level approaches | 2

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories
— Information redundancy (E.g.: EDC, ECC)

An example of application of such approach is the Leon2-FT produced by
Gaisler for ESA: a SEU tolerant microprocessor where FFs are protected by
Triple Modular Redundancy and all internal and external memories are
protected by error correction codes or parity bits.
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Architecture-level hardening

The whole processor is replicated and its outputs are checked/voted

Some approaches:
— Fault detection
* Lock-Step Dual Processor
* Loosely-Synchronized Dual Processor
* Watchdog processor

— Fault tolerance
* TMR —Triple Modular Redundancy
* Dual Lock-Step Architecture
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Architecture-level hardening | 2

Lock-Step Dual Processor

— Two processors execute the same code being strictly
synchronized

— Bus and memories are protected with codes

— The interrupt controller is
specifically designed with fault
detection mechanisms

ENT CTL

CPU

|

Master

)

Debug Unit |

CPU Address

& DATA
Checker |
ceker ::> monitor
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Architecture-level hardening | 2

Lock-Step Dual Processor
— Two processors execute the same code being strictly
synchronized
— Bus and memories are protected with codes

— The interrupt controller is

specifically designed with fault
. . S
detection mechanisms E
. . . NT CTL ZA
The solution is called fail-silent _ EEL
. NS
architecture (corrupted data are not C:}E N T —
e m itted ) g CPU é Address v
Checker :> f;];i:;‘:
— RAM

— Used as basic element for fault-
tolerant distributed systems
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Architecture-level hardening | 3

Example of Lock-Step Dual Processor: Xilinx Dual Lock-

Step Processor [
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Architecture-level hardening | 4

Loosely-synchronized dual processor

— Two processors run
independently

— The operating system is devoted
to inter-process communication,
synchronization and error
detection

POLITECNICO MILANO 1863

FLASH

I

CPUB
|iNT CTL

s
S 4
El
S |
S
3|
:I
= 1
|
-— 1
£ !
0
£+>
RAM FLASH




Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms
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Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms

— After an error detection, self-testing and sanity-check can be
performed to identify the faulty component
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Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)

— Synchronization mechanisms must be protected with specific
hardware/software mechanisms

— After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

— Two operational modes:

 Critical applications: loosely-synchronized architecture featuring
fault detection checks on synchronization

* Non critical tasks: dual-core architecture
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Architecture-level hardening | 6

Watchdog Processor

— The watchdog observes the behavior of the processor and
performs a high-level anomaly detection

* Execution statistics different from profiled ones (branch misses,
branch prediction, ...)

e Data values or memory addresses out of expected ranges

* Timeout expiration

1/O
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Architecture-level hardening | 7

TMR architecture
— Itis a lock-step solutions with three processors
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Architecture-level hardening | 8

Dual lock-step architecture

— Two dual lock-step nodes are
connected

— Each node is fail-silent
— Two operational modes:

* Fault detection for not-
critical tasks (each dual lock-
step executing a different
code)

* Fault tolerance for
critical tasks (both dual lock-

step executing the same code)
— This is a simple distributed system
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Architecture-level hardening | 9

Alternative solutions

— Memories can be shared between processor replicas, but...

— | CPU-A :D Address
FTL.ASH| FLLASH Checker & DATA FILASH|I FLASH
A B monitor A B
CPU-A ﬁ i B CPU-A ﬂ 1T
<::> Master |
S INT CTL<:£ =l [INT CTLQQ
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. e
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A B e :> mm;ito;' A B
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Architecture-level hardening | 9

Alternative solutions

— Memories can be shared between processor replicas, but...
— Issues with data protection in shared memory

A faulty task can corrupt data of the replica task

— | CPU-A ::> Address
FILASH| FLLASH Syl & DATA FLASH| FLLASH
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RAM | | RAM CPUB Address RAM | | RAM
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Process-level hardening

Software processes can be replicated and the results compared

The operating system (or a hypervisor) manages the replicas’ execution
and result comparison, possibly by means of specific hardware
components

Heterogeneous reliability requirements:
— The system executes both hardened processes and plain ones

— Many applications may tolerate a certain number of errors
(e.g., image processing ones)
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Process-level hardening | 2

The approach is widely-used due to the increasing diffusion of multi-
core and many-core architectures

— Mix of both time and space redundancies

Redundancy can be applied

— At design time: replications are implemented in the source code
of the program

— At run-time: the operating system decides to replicate tasks
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Process-level hardening | 3

Issues:

— Isolation: a process cannot access memory spaces of other
replicas

— The operating system must expose some kind of fault detection
mechanisms
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Process-level hardening | 4

Various alternatives:

— Run the same program or run diversified copies of the program
(SW diversity)

* aorb € not(not(a) and not(b)), a+b <=2 a—(—b)
— Check intermediate results

Master App 11 app App || Redundant
Process | - Processes
Libs ‘|| Libs Libs ||

| —
“~ | Syscall Emulation =~ Watchdog
* + Alarm

Operating System
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Mixed-level hardening

Mixed approaches can also be used:
— Fault detection is achieved at architectural-level
— Fault tolerance at process-level

The approach is mainly used on distributed systems

Approaches:
— Process replication
— Process re-execution
— Checkpointing
— Instruction-level hardening
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Mixed-level hardening | 2

Process replication

— Faults are detected by the architecture that does not return any
result (fail-silent) or that raises a warning

— Returned results are correct (at least we need results from one
replica)

Process re-execution
— When a fault is detected, the process is re-started
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Mixed-level hardening | 3

Checkpointing

— The operating system (or a HW mechanism) performs periodic
checkpointing of the status

— When a fault is detected, the status of the system is restored to the
previous checkpointing
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Instruction-level hardening

Time and information redundancy can be applied in the software at
instruction level

It is possible to act on both the source code or the assembler one
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Instruction-level hardening | 2

Instructions types
— Data: they perform an elaboration
e Assignment, sum, and, or, less then, equal,...

— Control: they allow the modification of the linear flow of the
execution

* Conditional instructions, loops (with initial condition, with final
condition, with counting), calls.

It is necessary to manage both the execution and the data flows
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Instruction-level hardening | 3

Fault modeled as:

¥
— Ccorru ption of the Instructifn fetch
execution of a single step Instruction decode
— corruption of a stored '
Parameters read
value |
Execution
.
Effe cts: Result storing
— erroneous execution of Mext instruction computation
|

workflow
— data errors



Instruction-level hardening | 4

Errors while executing data instructions

Corrupted phase

© Instruction fetch

o Instruction decode

Generated errors

o A data processing instruction is transformed into:
0O another data processing instruction: a wrong result is produced
O a control instruction: an erroneous jump to a random target is performed
= in the same basic block, or
= in a different basic block

© Parameters read
© Execution

© Result storing

© Instruction execution leads to a wrong result that is stored in memory

o Next instruction
computation

© An erroneous jump to a random instruction occurs:
O in the same basic block, or
O in a different basic block
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Errors while executing data instructions

Corrupted phase Generated errors
© Instruction fetch o A data processing instruction is transformed into:
) 0O another data processing instruction: a wrong result is produced
© Instruction decode O a control instruction: an erroneous jump to a random target is performed
= in the same basic block, or
= in a different basic block

© Parameters read © Instruction execution leads to a wrong result that is stored in memory
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© Result storing

o MNext instruction © An erroneous jump to a random instruction occurs:
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O in a different basic block
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Errors while executing data instructions
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Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase Generated errors

© Instruction fetch o The control instruction is transformed into:
) 0O a data processing instruction: a wrong result is produced and no jump is performed
o Instruction decode o another control instruction: an erroneous jump to a random target is performed

& in the same basic block, or
e in a different basic block

o Parameters read o Jump target computation error: an erroneous jump to a random instruction occurs:
. o in the same basic block, or
O Execution O in a different basic block

o Mext instruction © Branch direction evaluation error: wrong branch direction is taken

computation o The execution of a jump instruction is affected: no jump is performed

o Result storing o Mo instruction is performed: the fault causes no error because it is not activated
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Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase

Generated errors
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Instruction-level hardening | 5

Errors while executing control instructions

Corrupted phase

Generated errors

© Instruction fetch

o Instruction decode

© Parameters read

O Execution

O Mext instruction
computation

o The control instruction is transformed into:
0O a data processing instruction: a wrong result is produced and no jump is performed
O another control instruction: an erroneous jump to a random target is performed
& in the same basic block, or
e in a different basic block

o Jump target computation error: an erroneous jump to a random instruction occurs:
o in the same basic block, or
o in a different basic block

o Branch direction evaluation error: wrong branch direction is taken

o The execution of a jump instruction is affected: no jump is performed
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Instruction level hardening | 3

Data instructions

— Instructions are duplicated and results are compared duplication
and comparison

— The technique implies that all variables must be duplicated
— Example:

Original code Modified Code
int a,b; int a,. by, a1, bi;

a = b; N bg;

8] bi;

if (b, !'= by}
errori) ;

a=>bk + o Ag ba + ©o;

=81 b]_ + 24

1f( (bo!=b;) | | (ogl=c1))
error i) ;
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Instruction level hardening | 4

Data instructions (cont.)
— Selective instruction duplication

* |dentification of the trade-off between the reliability level and
performance degradation

1. Code Reliability Analysis
2. Code reordering
3. Selective Variable duplication
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Instruction level hardening | 5

Selective instruction duplication (cont.)
— Code Reliability Analysis
* Each variable is associated with a reliability-weight:

— The longer the lifetime the higher the probability of being
corrupted

— The more is the number of descendents the higher is the
number of variables on which an erroneous value could be
propagated

— Code reordering

* Functional equivalent code but with and improved global
reliability weight

— Selective variable duplication
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Instruction level hardening | 6

Control instructions
— Main concept: Basic Block (BB)

* basic block is a sequence of program statements that contains
no labels and no branches
from this definition a BB can only be executed completely and

in sequence
BB 1
BB 2 BB 3




Instruction level hardening | 7

Control instructions (cont.)
— A program can be described by a sequence of BBs
— Control Flow Errors are:
* illegal branches
* wrong branches
* branches in the middle of a BB
* branches from the middle of a BB
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Instruction level hardening | 8

Control instructions (cont.)
— Two signatures are introduced to control if
* the BB has been successfully completed

* The control flow jumps from the end of a BB to the beginning of
a correct BB

— The two signatures are:
* afirst instruction is introduced at the beginning of each BB
* asecond one is inserted at the end of the BB
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Instruction level hardening | 9

Control instructions (cont.)
— Logic schema: intra-block signature
 |dentify erroneous jumps

Global execution check flag
e.g.gef=5

Call instruction to a
routine ( ENTRY )

Block 1

Consistency check
e.g. if( gef !=5) error();

Call instruction to a
routine ( EXIT)

Block 2 Block 3
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Instruction level hardening | 10

Procedure duplication

— The body of the procedure is hardened

Procedure call duplication

Original code

Modified code

int res,a;

rezs = search

(a);

int search

(int pj

{ int q;
q=p + 1;

returnil) ;

1

int resg,, res,, ag, ai;

gearch({a,, a,,
Eres,, &res,);

void search{int pg,int
Pi1,1int *r,,int *r,)
{ int g, du;

gy = P + 1
“_:IJ.=P1+1-'

*ry = 1;
*r; = 1;
return;

}

— The procedure is called twice with the original parameter and

the replicated ones
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Application-level fault detection/management

Working scenario

Image Processing and Machine Learning
for perception and decision tasks in
mission/-safety-critical systems

(o | -9~
L)
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4 ""

POLITECNICO MILANO 1863




Application-level fault detection/management

GOAL: reduce reliability-related costs

STRATEGY: avoid re-computation when the
corrupted output can still be used, exploiting

context inherent tolerance to some degree of correct/corrupted
inexactness Vs,
usable/unusable

APPROACH: evaluate the produced output
(final or intermediate) w.r.t. a “usability”
concept and re-process it only if strictly
necessary
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Application-level fault detection/management

Example application
Building identification in aerial pictures

[©F20S]MicrosofiiGorporstion)
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Application-level fault detection/management

corrupted/usable

POLITECNICO MILANO 1863




Application-level fault detection/management

Strategy: innovative lightweight fault
impact management

-~ ~N
p.

( ) processing ot
processing out;ut input / =
input ~ p N 6%
( ) o7 exact replica = D[ Usable/
exact replica — correct/ \ J O unusable
\ ) corrupted
> CNN-based

usability-oriented
flexible checking

.

> Traditional redundancy
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TOPIC

QUESTIONS

How to harden computing
systems?

What hardware/software
techniques are available?

How can they be applied? Can
they be applied?

What coverage do they offer?

How difficult it is to apply them?




The hardening of a system can be
performed at different abstraction
levels

TOPICS
Applicability

Trade-off w.r.t. various parameters




