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| Outline of the lectures

- March 30 (9.15-12.15): Design for dependability:
model/data analysis:
- Introduction to the field
- Fault Detection
- March 31 (15.15-18.15): Design for dependability:
model/data analysis:
- Fault Diagnosis

- Fault Mitigation
- Presentation of the case studies

- April 1 (10.15-12.15): Discussion on case studies
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INTRODUCTION




Four examples of complex systems

POLITECNICO DI MILANO



Four examples of complex systems
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N Four examples of complex systems

Bird #2

Bird #4
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I
N| Four examples of complex systems

T \‘5.«!’7 \“i
\' Vi

=
(a) Matrice di confusione (b) Bagagli classificati come Persone
s
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O
| Detecting faults in complex systems

= |n general, unwished unpredictable situations are the
result of faults affecting the sensor/actuator system
and may be either permanent or temporary, developing
abruptly or incipiently.

= The problem becomes more pronounced as
sensing/actuation systems get older since the sensors
(along with the electronic chain up to the ADC) and the
actuators are no more able to provide the correct
functionality (and not always a calibration phase can solve
the issue)
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Detecting, Isolating and identifying
faults by analyzing data:
Why?
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O
| Detecting faults by analyzing data

= [t is of paramount relevance for all applications involving a
decision making process to design methods able to
analyze and interpret incoming data streams so that
faults are

- detected,
- Isolated,
- identified as soon as possible and,

- possibly, accommodated for before decisions or
actions are taken on the basis of carried information.
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O
| Why analyzing data?

= Despite the fact that hardware solutions can be envisaged to
partly mitigate the problems, e.g., those based on modular
redundancy by replicating the acquired hardware, they are not always
able to deal with all types of faults that the sensor might encounter.

= \Whereas an abrupt type of fault affecting a specific sensor can be
easily detected by setting suitable thresholds, a drift type of fault
would affect all sensors, hence making impossible to detect it
with a strict hardware replication schema.

= A modular redundancy also implies an increment in cost that, by
scaling linearly with the number of elements, might be acceptable for
integrated sensors but not necessarily for more accurate and
expensive traditional non silicon-based sensors.
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How to detect, isolate and identify
faults through data analysis?
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O
| Fault Detection and Diagnosis Systems (FDDS)

= Fault Detection and Diagnosis Systems are software applications designed to
detect potential insurgence of faults (fault detection),
identify them (i.e., determine their type and magnitude),
isolate faults (i.e., localize them within the system) and,
possibly, mitigate their effects through ad-hoc actions (management step)
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O
| On-line Detection / Off-line Diagnosis

= Detection
« On-line:
- Low Complexity

- Data stream
- Raise alarms

= Diagnosis (Isolation/ldentification)
- Off-line:
- High Complexity
- Info about the system
- Libraries of Faults
- On-line:
- Only when accommodation is considered
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FAULTS AND THE FAULT
DETECTION TASK




I
|FauHs

= Fault - An unpermitted deviation of at least one
characteristic property or parameter of the system form
the acceptable / usual / standard condition.

= Depending on the fault location:
- Faults in actuators
- Faults in sensors
- Faults in process components

%, %, %,

—» actuators —» process —» sensors [—»
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How to model the effects
of faults on data”?
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| Faults: the temporal evolution

= Depending on the temporal evolution:

- Abrupt faults — faults that manifest as quick changes in
the system, modelled as steps or bias signals.

- Incipient faults — manifest as slow drifts, modelled as

ramps or drift signals.

- Intermittent faults — manifest as impulse signals of

unknown duration and even amplitude.

A

A
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O
| Faults: the effect on the system

= Depending on the effect on the system:

- Additive faults — faults that affect system variables in
an additive way; the effect of the fault on the system
output only depends on the fault magnitude.

- Multiplicative faults — faults that modify system
parameters, their effect on the system outputs depends

not only on the fault size but also on the value of the
system input.

f
%+ —>6+A6 —
—>

POLITECNICO DI MILANO




Example of faults

Sensor Miscalibration

Thermal drift affecting
sensors

Electronic fault at the
board level

Communication error

Software error at the
readout system

Permanent

Permanent

Permanent/Transient

Permanent/Intermittent

Permanent/Intermittent

Incipient Offset/Drift
Incipient Drift/Precision
degradation
Abrupt Offset/Stuck-at Fault
Missing data
Abrupt Stuck-at Fault
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I
| Faults: example of sensor miscalibration

offset (additive) change in static gain
(multiplicative)
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| The fault detection task

= Fault detection — determination of the presence (or not) of

faults in the system.
= Goal - to detect faults as soon as possible, before their
future evolution leads to failures or security hazards.

A safety hazard

normal operation fault
—
detection
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I
| The fault detection task

= Situations to avoid:

- Undetected faults (false negatives) — faults acting on
the plant that are not detected by the FD system.

- False alarms (false positives) — an alarm is generated
by the FD system being the plant fault-free.

A f— fault signal
f F — fault
indicator (0/1)
A |
undetected
m fault
F
>
vfalse alarm
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The fault detection task

= Undetected faults vs. false alarms:

- In practice, the design of a FD system has to consider
a compromise between sensitivity to faults and
generation of false alarms.

- Undetected faults have to be eliminated in safety-
critical systems (examples: aircrafts, nuclear power
plants).

- False alarms are undesirable in systems whose
shutdown leads to important economic losses.

Any complex system requires a carefully designed FD to reduce
both undetected faults and false alarm
(the trade-off is application-dependent)
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I
| The fault detection task

= Temporal behaviour of the FD system:

sensitivity [
factor sd
F(t)
detection
false deteCtlon t mtermlttent
detection detection
time
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I
| The fault detection task

= Performance indexes to evaluate FD systems:

- False alarm rate - % of the time being the system in
normal operation in which the FD system (incorrectly)
indicates a faulty operation.

- True detection rate - % of the time being the fault
present in which the FD system (correctly) indicates
the faulty operation.

- Detection time (dt) — Period of time from the fault time
instant up to the moment of the last rising edge of the
detection indicator.

- Sensitivity factor (fsd) — Value of the fault strength in
the moment of the last rising edge of the detection
indicator.
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How to detect faults by analyzing
data? Which are the main families of
solutions?
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I
| Operating principle of FDs

= Operating principle: on-line comparison of the actual
system observed behaviour against the known “normal
operation behaviour”.

normal

behaviour ™ _
comparison) —» detection

observed el
behaviour

{ process J —>

= Knowledge about the “normal operation behaviour”:
- Empirical knowledge.
- Extracted from from data.
- Physical modelling.
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I
| Methods

= Types of FD methods:

- Traditional methods — simple test based on elementary
empirical knowledge about the process.

- Signal-based methods — Observation of signals whose
behaviour in normal operation is known; signal models
are characterized using experimental data.

- Model-based methods — The input-output relation for
normal operation is known; process models are
obtained by apriori information with experimental data.
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Methods: traditional methods

|
YA Y A
Y min
= -
t t
A alarm|upper threshold .
1 YA
A alarm lower threshold i =
(1) \@' Y min
-
4
| A alarm positive threshold
! i
| A alarm negative threshold
(a) (b) 0 -
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Methods: signal based methods

faules Wl
L Ty e

=P actuators /| process —>| sensors

\v4 signal model-based
signal — fault detection
! model - correlation function
' ! - Fourier analysis
lL | - Wavelet analysis
feature
| | generation features
| - exceeded thresholds
—4-Y,,8,,), R -
70> Py > Ty - amplitudes
normal change - frequencies
behavior detection
@ S analytical symptoms

[Isermann, 2006]
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Methods: model based methods

> faults ;
| Y
actuators /| process —>| sensors SENEEN
o
| process |,
model model-based fault detection
lL -~ - parameter estimation
- parity equations
feature - state estimation, observers
generation - principle component analysis
& r,0, x features
normal change ] S;aen‘lgg;iles
behavior detection :
- residuals

Us

analytical symptoms
[Isermann, 2006]

- I POLITECNICO DI MILANO



Methods
||
FD methods
Traditional Signal based Model based
. Qualitative
Limit Correlation Wavelets models
checking
Change Spectral Quantitative
detection Analysis models
Parity Observer Parameter
equations estimation
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TRADITIONAL METHODS




O
| Limit checking

= Testing if a given (measured) variable exceeds (indicating
of faults) or not a known absolute limit.

y alarm

> {
= Variants:

- Two limits, associated to different levels of safety.
- Use of superior and inferior limits.
= Easy to implement.

= Too conservative (low fault sensitivity).
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O
| Trend checking

= Testing if the derivative of a given (measured) variable
does not exceed a limit (or it is inside an interval).

SY. —>F(l‘\=0 yA

lim )

>Y —>F(t]=1

lim

Y

AN S

Y

« In some cases, this >
can lead to a faster A
detection. dy/dt| o
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Combination

= Testing both the absolute value and the value of the
derivative.

y A the acceptable value for
the derivative is lower
when the absolute value of
the approaches its limit

regign of >
normal gperation dy/dt
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O
| More powerful techniques need to be considered

wm) Statistical tests
- off-line: fixed length sequence (after storing all data)
- on-line: at each time instant

= Statistical hypothesis tests:
- Off-line
- Control of FPs
= Change detection tests
- On-line
- No control of FPs
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Hypothesis tests: the literature

| LI
. Type Change Entity 1D/ On-line/ Tramm‘g S"et
Test family (P/NP) under ND Off-line /A priori Notes
(Ab/Dr) test information
Statistical Assume normality and
Z-test Hypothesis Parameteric Abrupt Mean 1D Off-line Parameters aity
. known variance
testing
Statistical
t-test Hypothesis Parameteric Abrupt Mean 1D Off-line None Assume normality
testing
Mann- Statistical Non
Whitney U Hypothesis ) Abrupt Median 1D Off-line None Rank Test
. Parameteric
test testing
Statistical
- Non
KOll,”og orov Hypothesis ] Abrupt Pdf 1D Off-line None Also goodness of fit test
Smirnov test testing Parameteric
Statistical Non Mann-Whitney based
Krufkal Hypothesis . Abrupt Median 1D Off-line None . 4
Wallis test testing Parameteric Multiple subsets
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I
| Change-detection tests

= Change detection tests are methods designed to detect variations
in the pdf of the process generating the data

= Parametric approach: knowledge of the pdf before and after the
change

CUSUM test
Shiryaev-Robert test

= Nonparametric approach:
CI-CUSUM test, NPCUSUM test
|ICl-based change detection test
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SIGNAL-BASED METHODS




O
| Signal model-based fault-detection methods

= Many measured signals of processes show
oscillations that are either of harmonic or stochastic
nature, or both

= |f changes of these signals are related to faults in the
actuators, the processes and sensors, signal model-
based fault-detection methods can be applied

= Especially for machine vibration, the measurements of
position, speed or acceleration allows to detect imbalance
or bearing faults, knocking or chattering.

- I POLITECNICO DI MILANO




Scheme for the fault detection with signal models

l
Yl A
il |
faults v W ‘JW\ f
@ & ﬁ N ;
U Y
= actuators /| process —P>| sensors
v T signal model-based
signal — fault detection
! model - correlation function
' ! - Fourier analysis
lL | - Wavelet analysis
feature
| generation features
- exceeded thresholds
v Yy, Syy > Ry amplitudes
normal change - frequencies
behavior detection

Uos

analytical symptoms
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O
| Signal based methods

= Some signals present a known behaviour that is changed
by the presence of faults.

= Types of signal and methods:

signal based
/ detection \
periodic stochastic non-stationary
signals signals signals

/ ‘ \ / \\spectral \

filtering Fourier  correlation temporal

: : . wavelets
analysis analysis analysis
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I
| Filtering

= |t can be used when faults modify the spectrum of a given
signal in such a way each fault leads to a different

bandwidth for the signal.
- > F
R

. . Yy —
W1 \
band-pass filter amplitude
detectors
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Fourier analysis

= |t can be used when faults modify the signal spectrum

Normal
operation

Fault
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MODEL-BASED METHODS




I
| Fault detection with process-identification methods

= Mathematical process models describe the
relationships between input signals and output
signals

= |n many cases the process models is unknown or
some parameters are known

= Model must be precise in order to express deviations
results of process faults

= Process-identification methods must be applied
before applying any model-based fault-detection
method
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Model-based fault detection

> faults ;
| Y
actuators /| process —>| sensors SENEEN
o
| process |,
model model-based fault detection
lL -~ - parameter estimation
- parity equations
feature - state estimation, observers
generation - principle component analysis
& r,0, x features
normal change ] S;aen‘lgg;iles
behavior detection :
- residuals

Us

analytical symptoms
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| D
| Process models
|

= Mathematical models of dynamic processes are primarily
obtained by

- Theoretical/physical modelling

- the model is set up on the basis of mathematically formulated
laws of nature

- simplified assumptions about the process

- |ldentification methods (experimentally)

- mathematical model of a process from measurements
- parametric or nonparameteric models
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theoretical experimental
modelling modelling
- physical laws - physical i- signals - physical - signals - input/output
known; laws | measur- rules | measur- signals measurable;
- parameters known; 1 able known; 1 able - assumption of a
known - para- : -model | model structure
meters | structure |
unknown : unknown; :
: - parameters|
| unkown |

v

v

white-box
models

linear/non-linear
differential equations

light-grey-box
models
differential equations
w. parameter estimation

black-box
models

- impulse response;
- neurnal networks
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u
identification of dynamic processes
|
linear non-linear
pProcesses processes
I
correlation parameter parameter
methods estimation estimation
[ l
_ I I I I
- deconvolution 1 model
- non- i least squares special model general mode
NON-TECUISIVE | Jeast squares biased fructur structures
- Trecursive unbiase structire (neural networks)
- non-recursive  + extended - Hammerstein-  + multilayer
- recursive least squares model perceptrons
- square root - instrumental - Wiener - radial basis
filtering (DSFI, | variables model functions
DSFC) - maximum L Volterra - local linear
- UD-factorization likelihood series models
- stochastic
approximation
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| i-Q
Input-output models cenje

n(x,u,t)

= P is described through the input-output representation:
y(k) — h(y(k o 1)7 y(k o 2)7 Tt y(k o ky)vu(k)vu(k o 1)7 ce ,’LL(]C o ku)) + d(k)

= Linear input-output models represent a further specific subcase:

AR = Y ) +
i=1 "

A(z), Bi(z), Fi(z), C(z), D(z): z-transfer functions
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1.0
Some specific input-output models ense

= AR system model: linear autoregressive model

m ky
_ ;M%d(k) - k) = izzlaiy(k — i) + d(k).

= ARX system model: linear autoregressive model with exogenous inputs
)
d(k)
-1 3 o "y, .
y(k) = > awy(k—i)+ > bjulk —j) + d(k).
i=1 §=0
= Non-linear models:
Recurrent Neural Networks

LSTM/ESNSs
Non-linear ARX
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I
| Model-based fault detection: preliminaries

= Analytical redundancy — existence of two or more different
ways to determine the value of a given variable, at least
one of them using the system model (for normal
operation).

= Residual — Difference in the evaluation of a given variable

by two different ways; residuals (with large values) are
indicative of faults.

= Analytical Redundancy Relation (ARR) — relation between
known or measured variables that is satisfied in absence
of faults (moreover, it is expected that is not satisfied
when a fault appears); ARRs are normally expressed in
the form f(u,y)=0
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| Analytical redundancy

= Example:

- Model: y(k) = ay(k-1)+bu(k-1)
- Measured output: y (k)

- Qutput estimation (model): y.(k) = ay(k-1)+bu(k-1)
- Residual: r(k) = y,,(K)- y.(K)

u(k) —

eyl

—>

system

,

model

Ye(K)

K
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| Architecture of MBFD systems

= Architecture of model-based fault detection (MBFD)

systems:

——» system >
observations
(v v

!

\

residual | residuals
eneration |

residual
evaluation

J —» alarms

/
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I
| Stages in MBFD

1. Residual generation:

-« Combined use of model and measurements to obtain
fault indicators.

- If the model is perfect then all the residuals are zero
during normal plant operation.

- At least one of the residuals deviates from zero when a
fault to be detected is acting on the system.

r(t)=0—->FD(t)=0
r(t)20— FD(t)=1

= One residual can be sufficient for FD, several residuals
are needed for FDI.
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I
| Stages in MBFD

2. Residual evaluation:

- Modelling errors lead to non-zero residuals even during
fault-free operation.

- The evaluation of residuals aims at determining if the
magnitudes of the residuals are significant.

- In its simplest form, comparison of the actual value of
the residual against a fixed threshold.

r(t)=0—FD(t)=0
r(¢)#20—>FD(t)=1

= The thresholds values are selected to satisfy some
criterion related to false alarms and undetected faults.

- I POLITECNICO DI MILANO




An Example of FD based on parameter estimation
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FAULT DIAGNOSIS




How to diagnose (isolate and identify)
faults by analyzing data”
Which are the main solutions?
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I
| Fault detection, isolation, identification

= Tasks related to faults:

- Detection — Determination of the faults present in a
system and the time of detection.

- Isolation — Determination of the kind, location and time
of detection of a fault. Follows fault detection.

- |dentification — Determination of the size and time-
variant behaviour of a fault. Follows fault isolation.

= FD = Fault Detection, FDI = Fault Detection and Isolation,
FDD = Fault Detection and Diagnosis.

= |n practice, the use of the term diagnosis is very general:
sometimes, it can include detection; on the other hand,
identification can be considered or not.

Diagnosis
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I
| Fault detection, isolation, identification

= The importance of the previous tasks (detection, isolation,
identification) is in general decreasing, but the importance
of each task is given by the particular application.

= Fault detection is normally of great importance and it has
to be implemented on-line; fault isolation can be less
important and it may be sufficient its implementation off-
line; fault identification can be implemented or not.

= Fault detection is related to safety, fault isolation is related
to availability, fault identification is related to predictive
maintenance and fault-tolerant control.
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I
| Operating principle

= Fault diagnosis relies on comparing the observed
behaviour of the monitored system with the a-priori
knowledge about it.

v’ Remarks:
v' Real-time operation.
v' Knowledge for normal and [ system }
faulty operations is needed
(knowledge about normal

knowledge obseﬂations

operation is enough for FD) .

v' All faults have to affect the :> { diagnoser J
observed variables B
(detectable faults) in a u
different way (isolable diagnosis
faults).
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| D
| General formulation
|

= Notation:
- (U,Y) is the sequence of inputs/outputs.

- B, is the normal system behaviour, By is the system
behaviour under the effect of fault f.

= Detection — if the sequence (U,Y) is inconsistent with the

behaviour B, then the presence of a fault is concluded:
(U,Y) not in By — fault

= [solation — if the sequence (U,Y) is consistent with the

behaviour B; then the presence of fault f, is concluded.
(U,Y)EBﬁ —> faUIt fi
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O
| Detectability and isolability

= Normal and faulty behaviours can be distinguishable for
some sequences of system inputs and undistinguishable
for others.
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O
| Research in fault diagnosis

= Several independent research communities have
addressed the fault diagnosis problem, considering
different types of systems, using different problem setups,
different nomenclature, different tools,...

- Al community - using techniques such as expert
systems, qualitative models, consistency-based
diagnosis, ...

- FDI community - using mathematical models,
statistical techniques, signal processing, ...

- Others, e.g., chemical engineering community

= Current trend - Approaching between communities,
interchange of ideas, combined use of techniques.
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O
| General classification of methods ()

= Classification of diagnosis methods according to the a-
priori available knowledge about the system:

- Data-driven methods:

- Data about system operation is available, classified according
to the faults or not.

- Itis used to train a classifier: statistical classifier, neural
network, support vector machine,...

- On-line: classifier fed with incoming data...
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O
| General classification of methods (ll)

= Model-based methods:

- A deeper knowledge of the system is captured in a
model that supports diagnostic reasoning.

- Structure and behaviour, causality, first principles
Qualitative, quantitative, analytical, statistical

- Compare predictions and measurements to trigger the
diagnostic reasoning.

0 }_}_1 valve |

position — va';'/e — flow
reference PO On -

0 _E}_}—EE)— 0 pressure
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I
| Data-driven vs. model-based

= Data-driven vs. model-based:

- Data-driven methods:
- Requirement of real data for faulty operation.
- Are not able to manage new situations.
- Applicable to real complex and large scale systems (non-
linear, many measured variables).
- Model-based methods:

- Availability of real data in advance is not required.

- They are capable to face not previously experimented
situations, including multiple faults.

- Limitations in their application to complex systems.
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| D
N| Fault Isolation and Identification

Parametric System

|dentification f(0)
Q; Fault Diagnosis Take Action
System
Nominal State £ Fault Dictionary
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COGNITIVE FAULT DETECTION
AND DIAGNOSIS SYSTEMS




Which are the advantages of
cognitive mechanisms
for fault detection/diagnosis?

POLITECNICO DI MILANO




N A cognitive fault detection and diagnosis system
for distributed sensor networks

It
Location,Size,Magnitude
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A cognitive fault detection and diagnosis system

for distributed sensor networks
R

Sensor 5 (Temp4)

Sensor 6 (Clino4)

\) Sensor 1 (Temp2)

Sensor 2(Clino2
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A cognitive fault detection and diagnosis system
for distributed sensor networks

= x|
FAULT DIAGNOSIS SYSTEM

The partioned dependency graph

ensor 2 (Clino2) YSensor 3 (Temp3)

Partition of unrelated sensors (EP)

Cognitive Fault Diagnosis

= = = = =

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6
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Cognitive Fault Detection and Isolation:
HMM-based and the dependency graph

|
B FDSdemo =ra—=
FAULT DIAGNOSIS SYSTEM 1- HMM-CDT associated with H ((; j),(u,v)} detected a
| change in the 3-th data window;
The partioned dependency graph Partition the graph into sets E*, E~ and E¥ according

to Eq. (7), (8), 9) ;
34 Compute ST, S, S” according to Eq. (10), (11) and
oo (12);

Sensor 4 (Clino3) g

?m&‘?)“m 05 p— 44 Compute 1,71, 1" according to Eq. (I3), (14) and
\ Sensor 6 (Clino4) ( 15) :
= E+ ‘\\ / 5- if S” <T7" then
( Run FDS on real data \ / 6- | Change in 'P dctﬁctﬁd;
B else
7Fa:::sn‘r[e‘oueo77 2354967) 15 = 7“ if S+ < T+ and S_ < T_ then
T Sensert (femed) 8- |ls Model Bias in H ((; j) (u.v)) detected;
Fault point o 500 else
e s 9- if St < T+ then
ersty 02 ] 10- | Fault at sensor X ; ;) detected;
Aoply Sensor 2 (Clino2) SensorS(Temp3) else
FDS for faut isolati 11- | Fault at sensor X (v,u) detected;
Partition of E Partition of unrelated sensors(EP) end
PRI =S5 end
end
1 1
S+ = Wi Liis (3); (10) T = Wi Th.1iii : (13)
EE‘*‘ w{(i,j),(u,v)} ; {(2,3),(u,v) }*{(%,5),(u,v) } EE+ w{(i,j),(u,’v)} ; {(1,]),(u,v)} ,{(’L,]),(u,’v)}’
1 _ 1
ST = Wi (i), (u) {65, ()} (8); (11) T- = Wi T (i : (14
2B W), (w0)} ; HED (e PG Lo} > B W{G3),(uw)} ; (G oGy (9
1
S7 = Wi, (w0) A (09) (w0} (B)- (12) P 1
> 7 W0 (uoy) EZP {(59),(w, ) }{(5) (w,0) } TP = — Zw{(i,j),(w)}Th’{(i,j),(u,v)}_ (15)
257 W{(9),(:0)} 7
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Learning the Fault Dictionary

I TrosSnemo 6
File View Setting Help

GIRAL®

r— Displaying araphics

— Data

200

-200
-400

Evolving Clustering Algorithm

1: Train a cluster for each nominal state ¥ = {¥; }j‘:|

el — — o —

3 Set ag., 54

4: while A new 6y ; is calculated do
S )T & OUNg Y. ay)

6 if j*#0 then

7 if T(i.W.j*. 1) =1 then

— vy

500

-500

Start training phase

Online testing phase

State n®  Instances n°

ominal state 1 2
Faulty state
Outlier set Na. 0

Nominal cluster
characterization

Faulty dictionary
creation

t(1) Magnetometer, X axis [mGa] [ ) N Upe Tyl 50is W)
9 else
"Mmmm 10: U e Ty(Oy.i U0
T and if
W N ‘ 12: else
4 % 14: J* SOy P.ay)
15 if j*#0 then
utpur Gyroscope Yaxis[dpsl ? l 16: it T(i.®, )%, n) = 1 then
i i 17: Do Ty (On; i )
’) 18 for e € P(O).e = (6.k.1) do
19 if j*+« S(#.P,a,) then
20: if j* # 0 then
21: if T(k.®.j%. 1) =1 then
U 1. 2 2 _ . \
24: D T (0.k Pj)
Batch classification 25 end if
26: O « D,(#,k,0)
8|9 100112 (13 14 15 16 17 18|19 |20 | 24|22 2 end if
OO0 WO (000000000 ) 28 end if
29: end for
30: for je{l..... AR W ARE S T o} do
31: <[>471""(1[).1[»1..@])
:0.0127;0.00979;-0.0264] 32 end for
— 0°924,0.00223;-0.000664;-0.0239] 33 if
Creation time Batch:18, Coeficients 095 .0.0202,0.015-0.0245] . else
N.a. Batch:19, Coefficients:[0.94}-0.00128;-0.00587,-0.0177] 3. O To(lniii D)
] Batch:20, Coefficients:[0.94:0.0217;0.0166,-0.0273) i end ]if s
Na. Batch:21, Coefﬁc?ems:[O.M :0.0165;0.0161;-0.0289] ‘W else
Batch:22, Coefficients:[0.968;0.0518;0.0141;-0.0763] *) ———
39 if S, (WUd.0.a.) =1 then
40: O' + PS(0)
) 41: if S,0(0') =1 then
42 (0.9) + NC(O.0". ®)
43 end if
Faulty dictionary | Faulty dictionary G
characterization management O enalt
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FAULT ACCOMMODATION




How to manage and react to a fault?
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O
| Fault-tolerant components

= High-integrity systems require a comprehensive overall
fault-tolerance by fault-tolerant components and control

= This means the design of fault-tolerant
- sensors
- actuators
- process parts
- computers
- communications
- control algorithm

= Examples of components with multiple redundancy are
known for aircraft, space and nuclear power systems
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I
| Fault-tolerant sensors
||

= A fault-tolerant sensor configuration should be at least fail-
operation for one sensor fault

= This can be obtained by applying
- Hardware redundancy with the same type of sensor

- Analytical redundancy with different sensors and
process models
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Hardware sensor redundancy

- _
T ™ faul »| recon-
X —» detection figuration
1 sensor
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1 »| sensor |
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1 ser;sor —™
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plausibility > recon-
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X
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Xl
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Analytical sensor redundancy (1)

G ] sensor >
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Analytical sensor redundancy (2)
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I
| Comments

= For both hardware and analytical sensor redundancy
without fault detection for individual sensors, at least
three measurements must be available to make one
sensor fail-operation

= |f the sensor (system) has built-in fault detection
mechanisms (integrated self-test or self-validating), two
measurements are enough

* This means that by methods of fault detection, one
element can be saved
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CASE STUDY:
MODEL/DATA ANALYSIS




Case Study #1: Rock collapse monitoring system
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Case Study #2: Monitoring a datacenter

'R

[
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N Case Study #3: Tracking wildlife animals

Bird #2

Bird #4

O:=™=0:0
z0e0:0:=0

&l

POLITECNICO DI MILANO




g| Case Study #4: detecting the presence of people in the

airport conveyor belt
B T \I! . NN
- | /‘\E}_‘ | 7y
) 4 % |4 =

Bagaglio

e?'&
(a) Matrice di confusione (b) Bagagli classificati come Persone
7, %., 7, - 7 ‘E-x
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| D
N| Points to be discussed (1/3)

Detecting, Isolating and identifying

faults by analyzing data

1. Which is the information that is collected for the system and
how is it processed for the application purposes?

2. Which are the types of faults that could affect the system?

3. How can these faults affect acquired data? Which is the effect
on the application?
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I @
N| Points to be discussed (2/3)

How to detect faults

by analyzing data?

4. Which are the techniques that could be considered for fault
detection?

5. How does the technological implementation of the system

influence the selected fault detection technique? Where will it be
executed?
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I @
N| Points to be discussed (3/3)

Detecting, Isolating and identifying

faults by analyzing data

6. How critical is fault isolation? Why?

7. Fauld identification and the need of a fault dataset. How to deal
with it in the considered case study?

8. Is fault accommodation relevant? Why? How to implement it?
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NAvailable theses in the field
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I
| Four available theses

1. Spacecraft subsystems anomaly detection with
machine learning techniques

2. On-board machine learning system for filtering
relevant information

3. Privacy-preserving machine and deep learning

4. Embedded and Edge Al for Internet-of-Things
and Machine Learning
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