
Design for dependability:
model/data analysis

Manuel Roveri
Politecnico di Milano, DEIB, Milano,Italy

manuel.roveri@polimi.it

Prof. Manuel Roveri
• Dipartimento di Elettronica,

Informazione e Bioingegneria
• manuel.roveri@polimi.it
• http://roveri.faculty.polimi.it
• Research interests:

• Machine/Deep Learning
• Internet-of-Things and Cyber-Physical systems
• Cloud/Edge Computing

http://roveri.faculty.polimi.it/

Outline of the lectures

• March 30 (9.15-12.15): Design for dependability:
model/data analysis:

• Introduction to the field
• Fault Detection

• March 31 (15.15-18.15): Design for dependability:
model/data analysis:

• Fault Diagnosis
• Fault Mitigation
• Presentation of the case studies

• April 1 (10.15-12.15): Discussion on case studies

INTRODUCTION

Four examples of complex systems

Four examples of complex systems

Four examples of complex systems

Four examples of complex systems

Detecting faults in complex systems

§ In general, unwished unpredictable situations are the
result of faults affecting the sensor/actuator system
and may be either permanent or temporary, developing
abruptly or incipiently.

§ The problem becomes more pronounced as
sensing/actuation systems get older since the sensors
(along with the electronic chain up to the ADC) and the
actuators are no more able to provide the correct
functionality (and not always a calibration phase can solve
the issue)

Detecting, Isolating and identifying
faults by analyzing data:

Why?

Detecting faults by analyzing data

§ It is of paramount relevance for all applications involving a
decision making process to design methods able to
analyze and interpret incoming data streams so that
faults are
• detected,
• isolated,
• identified as soon as possible and,
• possibly, accommodated for before decisions or

actions are taken on the basis of carried information.

Why analyzing data?

§ Despite the fact that hardware solutions can be envisaged to
partly mitigate the problems, e.g., those based on modular
redundancy by replicating the acquired hardware, they are not always
able to deal with all types of faults that the sensor might encounter.

§ Whereas an abrupt type of fault affecting a specific sensor can be
easily detected by setting suitable thresholds, a drift type of fault
would affect all sensors, hence making impossible to detect it
with a strict hardware replication schema.

§ A modular redundancy also implies an increment in cost that, by
scaling linearly with the number of elements, might be acceptable for
integrated sensors but not necessarily for more accurate and
expensive traditional non silicon-based sensors.

How to detect, isolate and identify
faults through data analysis?

Fault Detection and Diagnosis Systems (FDDS)

§ Fault Detection and Diagnosis Systems are software applications designed to
• detect potential insurgence of faults (fault detection),
• identify them (i.e., determine their type and magnitude),
• isolate faults (i.e., localize them within the system) and,
• possibly, mitigate their effects through ad-hoc actions (management step)

On-line Detection / Off-line Diagnosis

§ Detection
• On-line:

− Low Complexity
− Data stream
− Raise alarms

§ Diagnosis (Isolation/Identification)
• Off-line:

− High Complexity
− Info about the system
− Libraries of Faults

• On-line:
− Only when accommodation is considered

FAULTS AND THE FAULT
DETECTION TASK

Faults

§ Fault - An unpermitted deviation of at least one
characteristic property or parameter of the system form
the acceptable / usual / standard condition.

§ Depending on the fault location:
• Faults in actuators
• Faults in sensors
• Faults in process components

How to model the effects
of faults on data?

Faults: the temporal evolution

§ Depending on the temporal evolution:
• Abrupt faults – faults that manifest as quick changes in

the system, modelled as steps or bias signals.
• Incipient faults – manifest as slow drifts, modelled as

ramps or drift signals.
• Intermittent faults – manifest as impulse signals of

unknown duration and even amplitude.

Faults: the effect on the system

§ Depending on the effect on the system:
• Additive faults – faults that affect system variables in

an additive way; the effect of the fault on the system
output only depends on the fault magnitude.

• Multiplicative faults – faults that modify system
parameters, their effect on the system outputs depends
not only on the fault size but also on the value of the
system input.

Example of faults

Event Fault Modeling Fault Evolution Fault signature

Sensor Miscalibration Permanent Incipient Offset/Drift

Thermal drift affecting
sensors

Permanent Incipient Drift/Precision
degradation

Electronic fault at the
board level

Permanent/Transient Abrupt Offset/Stuck-at Fault

Communication error Permanent/Intermittent Missing data

Software error at the
readout system

Permanent/Intermittent Abrupt Stuck-at Fault

Faults: example of sensor miscalibration

The fault detection task

§ Fault detection – determination of the presence (or not) of
faults in the system.

§ Goal – to detect faults as soon as possible, before their
future evolution leads to failures or security hazards.

The fault detection task

§ Situations to avoid:
• Undetected faults (false negatives) – faults acting on

the plant that are not detected by the FD system.
• False alarms (false positives) – an alarm is generated

by the FD system being the plant fault-free.

The fault detection task

§ Undetected faults vs. false alarms:
• In practice, the design of a FD system has to consider

a compromise between sensitivity to faults and
generation of false alarms.

• Undetected faults have to be eliminated in safety-
critical systems (examples: aircrafts, nuclear power
plants).

• False alarms are undesirable in systems whose
shutdown leads to important economic losses.

Any complex system requires a carefully designed FD to reduce
both undetected faults and false alarm
(the trade-off is application-dependent)

The fault detection task

§ Temporal behaviour of the FD system:

The fault detection task

§ Performance indexes to evaluate FD systems:
• False alarm rate - % of the time being the system in

normal operation in which the FD system (incorrectly)
indicates a faulty operation.

• True detection rate - % of the time being the fault
present in which the FD system (correctly) indicates
the faulty operation.

• Detection time (dt) – Period of time from the fault time
instant up to the moment of the last rising edge of the
detection indicator.

• Sensitivity factor (fsd) – Value of the fault strength in
the moment of the last rising edge of the detection
indicator.

How to detect faults by analyzing
data? Which are the main families of

solutions?

Operating principle of FDs

§ Operating principle: on-line comparison of the actual
system observed behaviour against the known “normal
operation behaviour”.

§ Knowledge about the “normal operation behaviour”:
• Empirical knowledge.
• Extracted from from data.
• Physical modelling.

Methods

§ Types of FD methods:
• Traditional methods – simple test based on elementary

empirical knowledge about the process.
• Signal-based methods – Observation of signals whose

behaviour in normal operation is known; signal models
are characterized using experimental data.

• Model-based methods – The input-output relation for
normal operation is known; process models are
obtained by apriori information with experimental data.

Methods: traditional methods

Methods: signal based methods

[Isermann, 2006]

Methods: model based methods

[Isermann, 2006]

Methods

FD methods

Traditional Signal based Model based

Limit
checking

Change
detection

Correlation

Spectral
Analysis

Wavelets Qualitative
models

Quantitative
models

Parity
equations

Observer Parameter
estimation

TRADITIONAL METHODS

Limit checking

§ Testing if a given (measured) variable exceeds (indicating
of faults) or not a known absolute limit.

§ Variants:
• Two limits, associated to different levels of safety.
• Use of superior and inferior limits.

§ Easy to implement.
§ Too conservative (low fault sensitivity).

Trend checking

§ Testing if the derivative of a given (measured) variable
does not exceed a limit (or it is inside an interval).

• In some cases, this
can lead to a faster
detection.

Combination

§ Testing both the absolute value and the value of the
derivative.

the acceptable value for
the derivative is lower
when the absolute value of
the approaches its limit

More powerful techniques need to be considered

§ Statistical tests
• off-line: fixed length sequence (after storing all data)
• on-line: at each time instant

§ Statistical hypothesis tests:
• Off-line
• Control of FPs

§ Change detection tests
• On-line
• No control of FPs

Hypothesis tests: the literature

 Test family Type
(P/NP)

Change
(Ab/Dr)

Entity
under

test

1D/
ND

On-line/
Off-line

Training Set
/A priori

information
Notes

Z-test
Statistical

Hypothesis
testing

Parameteric Abrupt Mean 1D Off-line Parameters Assume normality and
known variance

t-test
Statistical

Hypothesis
testing

Parameteric Abrupt Mean 1D Off-line None Assume normality

Mann-
Whitney U

test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Median 1D Off-line None Rank Test

Kolmogorov-
Smirnov test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Pdf 1D Off-line None Also goodness of fit test

Kruskal-
Wallis test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Median 1D Off-line None
Mann-Whitney based,

Multiple subsets

Change-detection tests

§ Change detection tests are methods designed to detect variations
in the pdf of the process generating the data

§ Parametric approach: knowledge of the pdf before and after the
change
• CUSUM test
• Shiryaev-Robert test

§ Nonparametric approach:
• CI-CUSUM test, NPCUSUM test
• ICI-based change detection test

SIGNAL-BASED METHODS

Signal model-based fault-detection methods

§ Many measured signals of processes show
oscillations that are either of harmonic or stochastic
nature, or both

§ If changes of these signals are related to faults in the
actuators, the processes and sensors, signal model-
based fault-detection methods can be applied

§ Especially for machine vibration, the measurements of
position, speed or acceleration allows to detect imbalance
or bearing faults, knocking or chattering.

Scheme for the fault detection with signal models

Signal based methods

§ Some signals present a known behaviour that is changed
by the presence of faults.

§ Types of signal and methods:

Filtering

§ It can be used when faults modify the spectrum of a given
signal in such a way each fault leads to a different
bandwidth for the signal.

band-pass filter amplitude
detectors

Fourier analysis

§ It can be used when faults modify the signal spectrum

Normal
operation

Fault

FFT

FFT

MODEL-BASED METHODS

Fault detection with process-identification methods

§ Mathematical process models describe the
relationships between input signals and output
signals

§ In many cases the process models is unknown or
some parameters are known

§ Model must be precise in order to express deviations
results of process faults

§ Process-identification methods must be applied
before applying any model-based fault-detection
method

Model-based fault detection

Process models

§ Mathematical models of dynamic processes are primarily
obtained by
• Theoretical/physical modelling

− the model is set up on the basis of mathematically formulated
laws of nature

− simplified assumptions about the process
• Identification methods (experimentally)

− mathematical model of a process from measurements
− parametric or nonparameteric models

Input-output models

§ P is described through the input-output representation:

§ Linear input-output models represent a further specific subcase:

A(z), Bi(z), Fi(z), C(z), D(z): z-transfer functions

iSense D1.1: Specification of System Characteristics

P
u

(, ,)x u tK
(, ,)d x u t

y

Figure 9: General scheme of the environment to be controlled or monitored

The dynamics of the environment P can evolve in either continuous time t ∈ R+ or in discrete
time k ∈ Z+. Alternatively, in a hybrid framework, the dynamics of P may evolve in continuous
time, with the measured outputs y(·) and the controlled inputs u(·) being recorded in discrete time
using sampling.

The next subsections present in more detail specific classes of system models that will be consid-
ered.

2.1 Non-linear differential equation models

2.1.1 Continuous time closed-loop uncertain models

Nonlinear dynamic systems: A closed-loop nonlinear multiple input multiple output (MIMO)
system (Fig. 10) can be described by continuous state space models, i.e. describing the systems
dynamics with nonlinear differential equations. Given the knowledge that the modeller has about
the system, different formulations may be more appropriate.

Controller P
u

(, ,)x u tK

(, ,)d x u t

yreference

Figure 10: General scheme of a closed loop MIMO system

Nonlinear MIMO dynamic model: A general model for nonlinear MIMO dynamic system
is described by [23]

ẋ(t) = f(x(t), u(t)) + η(x(t), u(t), t), (1)
y(t) = h(x(t), u(t)) + d(x(t), u(t), t), (2)

15

iSense D1.1: Specification of System Characteristics

Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)

23

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − ky), u(k), u(k − 1), . . . , u(k − ku)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

Bi(z)
Fi(z)

ui(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), Bi(z), C(z), D(z), and Fi(z) represent the z-transform
functions and, ui is the i-th input.

From the canonical form we can specify some linear input-output models for the system which
are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order ky, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
kyX

i=1

aiy(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − ky), u(k), u(k − 1), . . . , u(k − ku)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

Bi(z)
Fi(z)

ui(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), Bi(z), C(z), D(z), and Fi(z) represent the z-transform
functions and, ui is the i-th input.

From the canonical form we can specify some linear input-output models for the system which
are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order ky, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
kyX

i=1

aiy(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

Some specific input-output models

§ AR system model: linear autoregressive model

§ ARX system model: linear autoregressive model with exogenous inputs

§ Non-linear models:
• Recurrent Neural Networks
• LSTM/ESNs
• Non-linear ARX

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − ky), u(k), u(k − 1), . . . , u(k − ku)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

Bi(z)
Fi(z)

ui(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), Bi(z), C(z), D(z), and Fi(z) represent the z-transform
functions and, ui is the i-th input.

From the canonical form we can specify some linear input-output models for the system which
are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order ky, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
kyX

i=1

aiy(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − ky), u(k), u(k − 1), . . . , u(k − ku)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

Bi(z)
Fi(z)

ui(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), Bi(z), C(z), D(z), and Fi(z) represent the z-transform
functions and, ui is the i-th input.

From the canonical form we can specify some linear input-output models for the system which
are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order ky, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
kyX

i=1

aiy(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − ky), u(k), u(k − 1), . . . , u(k − ku)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

Bi(z)
Fi(z)

ui(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), Bi(z), C(z), D(z), and Fi(z) represent the z-transform
functions and, ui is the i-th input.

From the canonical form we can specify some linear input-output models for the system which
are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order ky, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
kyX

i=1

aiy(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

iSense D1.1: Specification of System Characteristics

where A(z) and B(z) are polynomials in z of order ky and ku, respectively. We can rewrite the
expression as

y(k) =
kyX

i=1

aiy(k − i) +
kuX

j=0

bju(k − j) + d(k). (55)

OE model: When A(z), C(z) and D(z) are equal to 1, Eq. (51) reduces to the output-error (OE)
model for the system; its SISO version can be expressed as

y(k) =
B(z)
F (z)

u(k) + d(k) (56)

where B and F are polynomials in z.

2.2.3 Linear state-space models

Another interesting case is the one where the system model of (47), (46) can be described by a
linear state-space representation:

x(k + 1) = Ax(k) + Bu(k) + η(k) (57)
y(k) = Cx(k) + Du(k) + d(k) (58)

where A is the state matrix (n× n), B is the input matrix (n×m), C is the output matrix (�× n)
and D is the feedforward matrix (�×m).

2.3 Network Flow Models

Several large scale systems can be described through a network flow model which may be considered
as a special case of the models described by (26)-(27). An example is a Distribution Water Network
(DWN) (e.g., the Barcelona water distribution network, which will be investigated during the iSense
project). This section presents the details of a hydraulic flow model while the appendix includes a
description of the detailed simulator of the Barcelona water network that is being developed. We
point out that the detailed Barcelona water distribution network is a complex network though the
model built had to be simple enough to allow for a large number of evaluations in a limited period
of time, imposed by real-time operation. In this spirit, the following subsection provides a summary
of the modelling methodology used for modelling a drinking water network.

2.3.1 Network model and variables

A water system will generally contain a number of flow, or pressure, control elements, located at
the supplies, at the water treatment plant inlets or within the network, and controlled through the
telecontrol system. A convenient description of the dynamic model of a water network is obtained
by considering the set of flows through these m control elements (valves and pipes) as the vector
of control variables u ∈ �m. The state of the network, or the effect of control actions, may be
observed in passive elements, such as water storage tanks. Then, the set of n reservoir volumes
monitored through the telemetry system is a vector of state variables x ∈ �n. Water demand at
consumer nodes may be considered a stochastic disturbance in the model. Then, d ∈ �p is a vector
of stochastic disturbances containing the values of the demands at the p consumer nodes in the

25

Model-based fault detection: preliminaries

§ Analytical redundancy – existence of two or more different
ways to determine the value of a given variable, at least
one of them using the system model (for normal
operation).

§ Residual – Difference in the evaluation of a given variable
by two different ways; residuals (with large values) are
indicative of faults.

§ Analytical Redundancy Relation (ARR) – relation between
known or measured variables that is satisfied in absence
of faults (moreover, it is expected that is not satisfied
when a fault appears); ARRs are normally expressed in
the form f(u,y)=0

Analytical redundancy

§ Example:
• Model: y(k) = ay(k-1)+bu(k-1)
• Measured output: ym(k)
• Output estimation (model): ye(k) = aye(k-1)+bu(k-1)
• Residual: r(k) = ym(k)- ye(k)

Architecture of MBFD systems

§ Architecture of model-based fault detection (MBFD)
systems:

Stages in MBFD

1. Residual generation:
• Combined use of model and measurements to obtain

fault indicators.
• If the model is perfect then all the residuals are zero

during normal plant operation.
• At least one of the residuals deviates from zero when a

fault to be detected is acting on the system.

§ One residual can be sufficient for FD, several residuals
are needed for FDI.

Stages in MBFD

2. Residual evaluation:
• Modelling errors lead to non-zero residuals even during

fault-free operation.
• The evaluation of residuals aims at determining if the

magnitudes of the residuals are significant.
• In its simplest form, comparison of the actual value of

the residual against a fixed threshold.

§ The thresholds values are selected to satisfy some
criterion related to false alarms and undetected faults.

An Example of FD based on parameter estimation

FAULT DIAGNOSIS

How to diagnose (isolate and identify)
faults by analyzing data?

Which are the main solutions?

Fault detection, isolation, identification

§ Tasks related to faults:
• Detection – Determination of the faults present in a

system and the time of detection.
• Isolation – Determination of the kind, location and time

of detection of a fault. Follows fault detection.
• Identification – Determination of the size and time-

variant behaviour of a fault. Follows fault isolation.
§ FD = Fault Detection, FDI = Fault Detection and Isolation,

FDD = Fault Detection and Diagnosis.
§ In practice, the use of the term diagnosis is very general:

sometimes, it can include detection; on the other hand,
identification can be considered or not.

D
ia

gn
os

is

Fault detection, isolation, identification

§ The importance of the previous tasks (detection, isolation,
identification) is in general decreasing, but the importance
of each task is given by the particular application.

§ Fault detection is normally of great importance and it has
to be implemented on-line; fault isolation can be less
important and it may be sufficient its implementation off-
line; fault identification can be implemented or not.

§ Fault detection is related to safety, fault isolation is related
to availability, fault identification is related to predictive
maintenance and fault-tolerant control.

Operating principle

§ Fault diagnosis relies on comparing the observed
behaviour of the monitored system with the a-priori
knowledge about it.

ü Remarks:
ü Real-time operation.
ü Knowledge for normal and

faulty operations is needed
(knowledge about normal
operation is enough for FD)

ü All faults have to affect the
observed variables
(detectable faults) in a
different way (isolable
faults).

General formulation

§ Notation:
• (U,Y) is the sequence of inputs/outputs.
• B0 is the normal system behaviour, Bfi is the system

behaviour under the effect of fault fi.
§ Detection – if the sequence (U,Y) is inconsistent with the

behaviour B0 then the presence of a fault is concluded:
(U,Y) not in B0 → fault

§ Isolation – if the sequence (U,Y) is consistent with the
behaviour Bfi then the presence of fault fi is concluded.
(U,Y)∈Bfi → fault fi

Detectability and isolability

§ Normal and faulty behaviours can be distinguishable for
some sequences of system inputs and undistinguishable
for others.

Research in fault diagnosis

§ Several independent research communities have
addressed the fault diagnosis problem, considering
different types of systems, using different problem setups,
different nomenclature, different tools,...
• AI community - using techniques such as expert

systems, qualitative models, consistency-based
diagnosis, ...

• FDI community - using mathematical models,
statistical techniques, signal processing, ...

• Others, e.g., chemical engineering community
§ Current trend - Approaching between communities,

interchange of ideas, combined use of techniques.

General classification of methods (I)

§ Classification of diagnosis methods according to the a-
priori available knowledge about the system:
• Data-driven methods:

− Data about system operation is available, classified according
to the faults or not.

− It is used to train a classifier: statistical classifier, neural
network, support vector machine,...

− On-line: classifier fed with incoming data...

General classification of methods (II)

§ Model-based methods:
• A deeper knowledge of the system is captured in a

model that supports diagnostic reasoning.
• Structure and behaviour, causality, first principles

Qualitative, quantitative, analytical, statistical
• Compare predictions and measurements to trigger the

diagnostic reasoning.

Data-driven vs. model-based

§ Data-driven vs. model-based:
• Data-driven methods:

− Requirement of real data for faulty operation.
− Are not able to manage new situations.
− Applicable to real complex and large scale systems (non-

linear, many measured variables).
• Model-based methods:

− Availability of real data in advance is not required.
− They are capable to face not previously experimented

situations, including multiple faults.
− Limitations in their application to complex systems.

Fault Isolation and Identification

Parametric System
Identification !(#)

input u(t) output y(t)
Process P

Nominal State Fault Dictionary

Take ActionFault Diagnosis
System

#

COGNITIVE FAULT DETECTION
AND DIAGNOSIS SYSTEMS

Which are the advantages of
cognitive mechanisms

for fault detection/diagnosis?

A cognitive fault detection and diagnosis system
for distributed sensor networks

Unit 4
Unit 3

Unit 2

Unit 1

Unit 5

Unit 6

Unit 4
Unit 3

Unit 2

Unit 1

Unit 5

Unit 6

A cognitive fault detection and diagnosis system
for distributed sensor networks

Unit 2

Exploit temporal
and spatial dependency

A cognitive fault detection and diagnosis system
for distributed sensor networks

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Cognitive Fault Diagnosis

Adaptation

Cognitive Fault Detection and Isolation:
HMM-based and the dependency graph

E+

E-

E
P

Learning the Fault Dictionary

Evolving Clustering Algorithm

Nominal cluster
characterization

Faulty dictionary
characterization

Faulty dictionary
management

Faulty dictionary
creation

FAULT ACCOMMODATION

How to manage and react to a fault?

Fault-tolerant components

§ High-integrity systems require a comprehensive overall
fault-tolerance by fault-tolerant components and control

§ This means the design of fault-tolerant
• sensors
• actuators
• process parts
• computers
• communications
• control algorithm

§ Examples of components with multiple redundancy are
known for aircraft, space and nuclear power systems

Fault-tolerant sensors

§ A fault-tolerant sensor configuration should be at least fail-
operation for one sensor fault

§ This can be obtained by applying
• Hardware redundancy with the same type of sensor
• Analytical redundancy with different sensors and

process models

Hardware sensor redundancy

Analytical sensor redundancy (1)

Analytical sensor redundancy (2)

Comments

§ For both hardware and analytical sensor redundancy
without fault detection for individual sensors, at least
three measurements must be available to make one
sensor fail-operation

§ If the sensor (system) has built-in fault detection
mechanisms (integrated self-test or self-validating), two
measurements are enough

§ This means that by methods of fault detection, one
element can be saved

CASE STUDY:
MODEL/DATA ANALYSIS

Case Study #1: Rock collapse monitoring system

Case Study #2: Monitoring a datacenter

Case Study #3: Tracking wildlife animals

Case Study #4: detecting the presence of people in the
airport conveyor belt

Points to be discussed (1/3)

1. Which is the information that is collected for the system and
how is it processed for the application purposes?

2. Which are the types of faults that could affect the system?
3. How can these faults affect acquired data? Which is the effect

on the application?

Detecting, Isolating and identifying
faults by analyzing data

Points to be discussed (2/3)

How to detect faults
by analyzing data?

4. Which are the techniques that could be considered for fault
detection?

5. How does the technological implementation of the system
influence the selected fault detection technique? Where will it be
executed?

Points to be discussed (3/3)

Detecting, Isolating and identifying
faults by analyzing data

6. How critical is fault isolation? Why?
7. Fauld identification and the need of a fault dataset. How to deal

with it in the considered case study?
8. Is fault accommodation relevant? Why? How to implement it?

Available theses in the field

Four available theses

1. Spacecraft subsystems anomaly detection with
machine learning techniques

2. On-board machine learning system for filtering
relevant information

3. Privacy-preserving machine and deep learning
4. Embedded and Edge AI for Internet-of-Things

and Machine Learning

98

