
Advanced topics in Hardware Security

-

Introduction

Luca Cassano

luca.cassano@polimi.it

cassano.faculty.polimi.it/ds.html

Acknowledgment

Prof. Mark Tehranipoor

University of Florida (US)

Prof. Marco Ottavi

University of Rome Tor Vergata (IT) and University of Twente (NL)

Course organization

Lecturer

Luca Cassano
luca.cassano@polimi.it

Students meeting:

‘‘Officially’’ on Monday 15:00 – 18:00

@DEIB, 1° Floor, Building 20, Campus Leonardo

But you can always send an email to fix an appointment

Lecturer

Associate Professor @DEIB-POLIMI

MSc in “Ingegneria Informatica” (2009) and PhD in “Ingegneria
dell’Informazione” (2013) both from the University of Pisa

Research topics:

– Design, verification, test and diagnosis of electronic circuits
and systems

– Hardware Security (Hardware Trojans, Microarchitectural
Side-channel attacks, Logic Locking, Fault Attacks)

Students introductions…

Additional lecturer

Prof. Christian Pilato
christian.pilato@polimi.it

Course topics

• Introduction to hardware security

• The VLSI design cycle

• Cryptography

• Fault attacks

• Hardware Trojan Horses

• Taxonomy and examples

• Countermeasures

• Side-Channel Attacks and Microarchitectural Side-Channel Attacks

• Flush+Reload, Spectre, Meltdown

• Countermeasures

• VLSI counterfeiting and intellectual property stealing

• Countermeasures

Course calendar

Date Topic

March 6 Mon Course introduction – perspective

March 10 Fri Students presentations

March 13 Mon Hardware Trojans Horses

March 17 Fri Students presentations

March 20 Mon Microarchitectural SCAs

March 24 Fri Students presentations

March 27 Mon IP Piracy

March 31 Fri Students presentations

April 3 Mon Logic locking

April 6 Thu Students presentations

Luca Cassano

Christian Pilato

Monday, 9:15 – 12:15, room 3.1.8

Friday, 9:15 – 11:15, room 2.2.3

Thursday, April 6th 9:15 – 11:15, room 25.1.4

Reference Material

These slide

Bhunia, Swarup, and Mark Tehranipoor. Hardware security: a
hands-on learning approach. Morgan Kaufmann, 2018

Reference scientific papers at the end of these slides

Course assessment

• For PhD students:

• Attending the lectures and carrying out assignments

• For Master students:

• A final project is required

Non-functional properties

Dependability

Dependability: the level of trust that a system operates as
expected, and will not fail for some unintended reason

Dependability

Quality: the level of trust that a system operates correctly when
facing the occurrence of random events at manufacturing

Dependability

Reliability: the level of trust that a system will operate correctly
when facing the occurrence of random events during its mission

Dependability

Security: the level of trust that a system will operate correctly when
facing the occurrence of malicious events both at manufacturing
and mission time

Security properties

Confidentiality

No one except the legitimate user(s) is able to understand the
content of a piece of data

Integrity

No one can modify a piece of data without the legitimate user(s) be
able to detect the modification

Non repudiation

A piece of data can univocally be associated with its legitimate
author

Anti-reply

A piece of data cannot be maliciously replicated without the
legitimate user(s) be detect it

Anti-DOS (continuity)

A system/functionality/data should continuously be available for its
legitimate user(s)

The role of hardware in security

Hardware Security Problem

Cybersecurity experts have traditionally assumed that the hardware
underlying information systems is secure and trusted.

However such assumption is no longer true.

Hardware cannot be considered the root of trust

Hardware Trust and Hardware Vulnerability

Two main problems with the root of trust assumption

• Hardware Trust: are we sure that the hardware has been made
by trusted sources?

• Has the intellectual property been protected?

• Has the right number hardware pieces been produced?

• Are the hardware pieces we received the expected ones?

• Are there any unwanted malicious modifications (Trojans)?

Hardware Trust and Hardware Vulnerability

Two main problems with the root of trust assumption

• Hardware Vulnerability: are there any vulnerabilities that could
be exploited by an attacker?

• Fault attacks

• Side Channel Attack attacks

• Transient execution attacks (example Spectre, Meltdown)

Some attack examples

In 1962 the Xerox 914 copy machine,
the world's first, was used in soviet
embassies all over the world.

The machine was so complex that the
CIA used a tiny camera designed by
Zoppoth to capture documents copied
on the machine by the soviets.

Pictures were then retrieved by a
"Xerox repairman" right under the
eyes of soviet security.

Roy Zoppoth stands over a Xerox 914

Some attack examples

The Outside the Box Israeli Air Force operation:
• Eight fighter planes from IAF attacked and destroyed a nuclear

plant (under construction) in Deir ez-Zor, Syria, in 2007
• All Syrian radars and air defense missile systems switched-off

simultaneously
• Syrian defense equipments featured COTS components (probably

manufactured by Intel Israel)
• All these information have been confirmed by IAF in 2018

Some attack examples

Fake Cisco routers risk "IT subversion”
• An internal Federal Bureau of Investigation

presentation states that counterfeit Cisco
routers imported from China may cause
unexpected failures in American networks.
The equipment could also leave secure
systems open to attack through hidden
backdoors.

Some attack examples

Spectre poisons the branch prediction and the speculative
execution to force the processor to execute instruction sequences
that should not be executed

Then, by exploiting timing measurements on the cache accesses,
the attacker can retrieve a secret from the cache of the attacked
program without having physical access to it

Some attack examples

Meltdown exploits out-of-order execution to break the isolation
between the memory spaces of user applications and of the
operating system

It allows the attacker program to access any memory space, thus,
stealing secrets from the operating system or other users
applications

The lifecycle of modern integrated circuits

VLSI Design Cycle

Each level is characterized by a specific representation of the design.

• Functional level → flow charts

• Logic Design → Boolean logic

• Circuit Design → logic gates

VLSI Design Cycle

At manufacturing level the final
representations are

• Physical design → layout and standard cells

• Fabrication → masks for lithography

VLSI Design Cycle

System -> Architecture -> Logic ->Transistor

VLSI Design Cycle

Full Adder, Black Box view

• Inputs X,Y, Cin

• Outputs S, Cout

VLSI Design Cycle

Full Adder, Behavioral view

● VHDL

entity adder is

-- i0, i1 and the carry-in ci are inputs of the adder.

-- s is the sum output, co is the carry-out.

port (i0, i1 : in bit; ci : in bit; s : out bit; co : out bit);

end adder;

architecture rtl of adder is

begin -- This full-adder architecture contains two concurrent assignment.

-- Compute the sum. s <= i0 xor i1 xor ci;

-- Compute the carry. co <= (i0 and i1) or (i0 and ci) or (i1 and ci);

end rtl;

VLSI Design Cycle

Full Adder, Behavioral view

● Verilog

module fulladder (a,b,cin,sum,cout);

input a,b,cin;

output sum,cout;

reg sum,cout;

always @ (a or b or cin)

begin

sum <= a ^ b ^ cin;

cout <= (a & b) | (a & cin) | (b & cin);

end

endmodule

VLSI Design Cycle

Full Adder, Logic view

VLSI Design Cycle

Full Adder, Circuit view

VLSI Design Cycle

Full Adder, Layout view

VLSI Design Cycle

How do we make a transistor?

How do you control where the features
get placed?

 Photolithography masks on several
layers

 Iterative process with several
masks

VLSI Design Methodologies

• Full custom (ASIC)
○ Design for performance-critical cells
○ Very expensive

• Standard cell (ASIC)
○ Faster
○ Performance is not as good as full custom

• Gate array
○ Field Programmable Gate Array
○ Lower performances
○ Design errors can be fixed through reprogramming
○ Higher cost on sngle chip with respect to ASICs
○ Good for emulation and for low volume production

VLSI Design Methodologies

VLSI Design Methodologies

ASICs:
○ high costs for design and

development
○ low manufacturing cost of single

device when produced in high
volumes

FPGAs:
○ low cost for design and

development
○ high costs of individual devices →

does not scale with volume

Where hardware security issues come from?

VLSI Industry: Business Model trends

Vertical Model:

all in-house development, high
costs, low economy of scale

Horizontal Model:

several companies involved,
lower costs, economy of scale

IC Design and Test Flow

Fab

Assembly

Wafer test

Burn inPackage testCustomer

IC

Design
Design

Spec.

Where are modern chips developed?

Throughout the globe

The phases of design,
manufacturing,
testing, packaging are
a truly global activity

This raises potential
trust issues

Fabless industry up to 33%

Can we Trust Hardware?

IP: Intellectual
properties sometimes
provided by third party
vendors

System Integrator
combines several IPs
into a chip design

Manufacturer fabricates
the chips based on the
received design

Can we Trust Hardware?

• HW Trojan

Horses

Can we Trust Hardware?

• HW Trojan

Horses

• IP theft

• Malicious CAD

tools

Can we Trust Hardware?

• HW Trojan

Horses

• IP theft

• Off spec. and

Defective ICs

• Overproduced

ICs

• Recycled ICs

Can we Trust Hardware?

Security principles

What Does Secure Mean?

It has to do with an asset that has some value – think of what can
be an asset

There is no static definition for “secure”

Depends on what is that you are protecting your asset from

Typically, breach of one security makes the protection agent aware
of its shortcoming

There is no security by obscurity

Typical Cycle in Securing a System

1. Identify the attacker

2. Predict potential breaches and vulnerabilities

3. Consider possible countermeasures, or controls

4. Either actively pursue identifying a new breach, or wait for a
breach to happen

5. Identify the breach and work out a protected system again

Some definitions

Threat: Set of circumstances that has the potential to cause loss or
harm

Vulnerability: Weakness in the secure system

Attack: The act of a human exploiting the vulnerability in the
system

Hardware Threats

Where does security is required?

In the cyber-physical world security is not only related to data anymore

Embedded Systems Security/IoTs

Security processing adds overhead
• Performance and power

Security is challenging in embedded systems/IoTs
• Size and power constraints, and operation in harsh

environments

Security processing may easily overwhelm the other aspects of the
system

Security has become a new design challenge that must be
considered at the design time, along with other metrics, i.e.,
cost, power, area

Basic security: cryptography

Crypto-algorithms enable:

• Confidentiality

• Integrity

• Authentication

Basic Cryptographic Scheme

• M = <m1, m2, ..., mn> mi = i-th char of M

– M = “DO NOT TELL ANYBODY” m1 =”D”, m2 = ”O”, etc.

• C = <c1, c2, ..., cn> ci = i-th char of C

– C = “ep opu ufmm bozcpez” c1 =”e”, c2 =”p”, etc.

plaintext ciphertext

original
plaintextENCRYPTION

E

DECRYPTION

D
M C M

K K

Cryptanalysis

• Cryptanalysts goals:

• Deduce the key

• Break a single message without deducing the key

• Recognize patterns in encrypted msgs, to be able to break
the subsequent ones

• Find a general weakness in an encryption algorithm

• Find vulnerabilities in the implementation or the execution
environment of an encryption algorithm

Cryptanalysis

• Traditional attacks:

• Ciphertext only attack

• Known plaintext attack

• Chosen plaintext attack

• Chosen ciphertext attack

• Side-channel attacks

Taxonomy of Side Channel Attacks

Passive attacks: observe the behavior of the device to infer
information about the secret
Active Attacks: physically operate on the device to gather information
about secret (e.g. fault injection or microprobing)

Fault Injection Attacks

Methodology: the device
executing the crypto algorithm
is injected with a fault

Objective: break the
implementation of the crypto
algorithm

The injected fault introduces a
temporary malfunction during
the device operation

Fault Injection Attacks

Example: fault injection attack on AES
• The attacker is able to chose a plaintext P and to encrypt it, thus

getting Cg

• The attacker wants to retrieve the secret key

Fault Injection Attacks

The attacker re-encrypts P
k0 bit of the key in injected with a stuck-at-zero fault
The attacker gets Cf

Two possible outcomes:
• If Cg = Cf the injected fault had no effect, thus k0 was 0
• If Cg != Cf the injected fault affected the encryption, thus k0 was 1

Fault Injection Techniques: low cost

Voltage Glitching: the device is supplied with a lower voltage.

• Not invasive

• High precision if the structure of the circuit is known

Fault Injection Techniques: low cost

Clock tampering: a faulty clock signal is fed into the system

• Either a glitch in the clock or the modification of the
voltage level of the clock

• Not invasive

• High precision if the structure of the circuit is known

Fault Injection Techniques: low cost

EM Disturbance are generated and directed to the target device

• Not invasive

• Extremely difficult to be precise (the disturbance will affect the
entire device)

Fault Injection Techniques: medium to high cost

Laser beams, radiation beams and light pulses attacks

• requires a decapsulated chip (invasive)

• precision depends on the quality (and the cost) of the beam

Fault Injection Attacks: the RSA example

Basics of RSA:

• m is the plaintext and c is the cyphertext

• n = p * q public modulus, with p and q two large prime numbers
(0 <= m <= n)

• e public exponent (calculated based on p and q)

• d private exponent (calculated based on p and q)

• e, d and n are such that

• (me)d = m mod n

• (md)e = m mod n

• The public key is (n, e)

• The private key is (n, d)

Fault Injection Attacks: the RSA example

Basics of RSA:

• when encrypting c = me mod n

Such encryption can be inverted (decrypted) only knowing the d
associated with e

• when decrypting m = cd mod n

Fault Injection Attacks: the RSA example

Attacks to RSA aim at:

• Factoring n thus recovering the prime numbers p and q

• Recovering d

Fault Injection Attacks: the RSA example

The Bellcore attack (a chosen-plaintext attack):

• The plaintext m and the associate cyphertext c are given

• The attacker injects a fault while the circuit is decrypting c such
that the produced plaintext is m’ = m + δ

• The attacker can now retrieve p (or q) by calculating the greatest
commod divisor between δ and n

• It is enough to have m and m’ to break RSA

Fault Injection Attacks: the RSA example

The safe-error attack:

• The attacker must know where the bits of the key are stored and
when they are eused

• The attacker is able to flip a bit of the key when it is used

• If the flipped bit was 0 (flipped to 1) the produced output will be
the same w.r.t. the expected one

• If the flipped bit was 1 (flipped to 0) the produced output will
differ from the expected one

Security features in RISC-V

RISC-V security: sw stack implementations

Several software stack implementations with different levels of
security are available

SINGLE APPLICATION SCENARIO

• No operating System

• The user application interacts with Application Execution

Environment (AEE) through the Application Binary Interface (ABI)

• The AEE has direct access to the hardware

A. Waterman and K. Asanovic, “The risc-v instruction set manual volume ii: Privileged architecture document version 20190608-priv-msuratified,” RISC-V Foundation, Tech.
Rep., 2019.

Hardware

RISC-V security: sw stack implementations

Several software stack implementations with different levels of
security are available

MULTIPROGRAMMED SCENARIO

• The Operating System manages multiple applications

• User applications interacts with the OS

through the ABIs

• In turn the OS interacts with the

Supervisor Execution

Environment (SEE) to the Supervisor

Binary Interface (SBI)

• Finally the SEE has direct access to the hardware

Hardware

RISC-V security: sw stack implementations

Several software stack implementations with different levels of
security are available

VIRTUALIZED SCENARIO

• Multiple OS are executed, each with its own SBI

• A Hypervisor manages the execution of the multiple OS

• The Hypervisor manages the OS and interact with the

Hypervisor Execution

Environment (HEE) through

the Hypervisor Binary

Interface (HBI)

• In turn, the HEE has direct

access to the hardware
Hardware

RISC-V security: instruction privileges

Several instruction privilege levels are available

• M (Machine mode): code running in machine mode is totally
trusted and has direct access to the HW

• (AEE, SEE and HEE are executed in M mode)

• U (User mode): untrusted code with no direct access to the HW

• (user applications are executed in U mode)

• S (Supervisor mode): an additional mode introduced to provide
isolation between the (possibly untrusted) OS and the Execution
Environments

RISC-V security: Additional mechanisms

Physical Memory Protection (PMP)

The Machine mode (the highest privileged mode) allows to specify
access privileges (read, write, execute) for each physical memory
region

Attempting to fetch an instruction from a memory location that
does not have execute permissions or to load data from a location
without read permissions raise exceptions

RISC-V security: Additional mechanisms

Cryptography Extension

Instructions implementing cryptographic algorithms have been
introduced to enable confidentiality of the data exchanged in the
system

AES (for symmetric encryption) and SHA (for hashing) as well as
lightweight algorithms like PRESENT and GOST are supported

RISC-V security: limitations

All the available security mechanisms have been designed to deal
with “traditional” attacks

• Attempts to break data confidentiality and integrity

• Attempts to perform unauthorized accesses or executions

No protection is provided against “novel” hardware-based menaces
like MSCAs and HTHs

Students assignments

• “Lightweight Protection of Cryptographic Hardware Accelerators against Differential Fault
Analysis”, Ana Lasheras, Ramon Canal, Eva Rodríguez and Luca Cassano, In IOLTS 2020, the 26th
IEEE International Symposium on On-Line Testing and Robust System Design, Naples (Italy), July
13-15, 2020

• "Physical Unclonable Functions and Applications: A Tutorial," C. Herder, M. -D. Yu, F. Koushanfar
and S. Devadas, in Proceedings of the IEEE, vol. 102, no. 8, pp. 1126-1141, Aug. 2014

• "Anti-counterfeit Techniques: From Design to Resign," U. Guin, D. Forte and M. Tehranipoor, 2013
14th International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 2013, pp.
89-94

• "Building trusted ICs using split fabrication," K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu and L.
Pileggi, 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
Arlington, VA, USA, 2014, pp. 1-6

• "Robust, low-cost, and accurate detection of recycled ICs using digital signatures," M. Alam, S.
Chowdhury, M. M. Tehranipoor and U. Guin, 2018 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), Washington, DC, USA, 2018, pp. 209-214,

References

• M. Rostami, F. Koushanfar, J. Rajendran, R. Karri, "Hardware security: threat models and metrics", in: Proc. Int. Conf.
Computer-Aided Design, 2013, pp. 819–823.

• Mohammad Tehranipoor, Cliff Wang, “Introduction to Hardware Security and Trust”, Springer-Verlag New York, 2012
• Potlapally, Nachiketh. "Hardware security in practice: Challenges and opportunities." 2011 IEEE International Symposium

on Hardware-Oriented Security and Trust. IEEE, 2011.
• Hu, Wei, et al. "An overview of hardware security and trust: Threats, countermeasures, and design tools." IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 40.6 (2020): 1010-1038.
• U. Guin, K. Huang, D. DiMase, J.M. Carulli, M. Tehranipoor, Y. Makris, Counterfeit integrated circuits: a rising threat in the

global semiconductor supply chain, Proc. IEEE 102 (8) (2014) 1207–1228
• Guin, U., DiMase, D. & Tehranipoor, M. “Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges

Ahead.” Journal of Electronic Testing 30, 9–23 (2014).
• A. Carelli, C. A. Cristofanini, A. Vallero, C. Basile, P. Prinetto and S. Di Carlo, "Securing bitstream integrity, confidentiality

and authenticity in reconfigurable mobile heterogeneous systems," 2018 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2018, pp. 1-6, doi: 10.1109/AQTR.2018.8402795

• A. Barenghi, L. Breveglieri, I. Koren, D. Naccache, "Fault injection attacks on cryptographic devices: theory, practice, and
countermeasures", Proc. IEEE 100 (11) (2012) 3056–3076

• D. Boneh, R.A. DeMillo, R.J. Lipton, "On the importance of checking cryptographic protocols for faults", International
Conference on the Theory and Applications of Cryptographic Techniques, 1997, pp. 37–51.

• F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimhalu, T. Ngair, "Breaking public key cryptosystems on tamper resistant
devices in the presence of transient faults", International Workshop on Security Protocols (1997) 115–124.

• M. Joye, S.-M. Yen, "The montgomery powering ladder," International Workshop on Cryptographic Hardware and
Embedded Systems, 2002, pp. 291–302.

• S.-M. Yen, M. Joye, "Checking before output may not be enough against fault-based cryptanalysis," IEEE Trans. Comput.
49 (9) (2000) 967–970.

• A. Barenghi, G. Bertoni, E. Parrinello, G. Pelosi, "Low voltage fault attacks on the rsa cryptosystem," in: 2009 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009, pp. 23–31.

	Diapositiva 1: Advanced topics in Hardware Security - Introduction
	Diapositiva 2: Acknowledgment
	Diapositiva 3: Course organization
	Diapositiva 4: Lecturer
	Diapositiva 5: Lecturer
	Diapositiva 6: Students introductions…
	Diapositiva 7: Additional lecturer
	Diapositiva 8: Course topics
	Diapositiva 9: Course calendar
	Diapositiva 10: Reference Material
	Diapositiva 11: Course assessment
	Diapositiva 12: Non-functional properties
	Diapositiva 13: Dependability
	Diapositiva 14: Dependability
	Diapositiva 15: Dependability
	Diapositiva 16: Dependability
	Diapositiva 17: Security properties
	Diapositiva 18: Confidentiality
	Diapositiva 19: Integrity
	Diapositiva 20: Non repudiation
	Diapositiva 21: Anti-reply
	Diapositiva 22: Anti-DOS (continuity)
	Diapositiva 23: The role of hardware in security
	Diapositiva 24: Hardware Security Problem
	Diapositiva 25: Hardware Trust and Hardware Vulnerability
	Diapositiva 26: Hardware Trust and Hardware Vulnerability
	Diapositiva 27: Some attack examples
	Diapositiva 28: Some attack examples
	Diapositiva 29: Some attack examples
	Diapositiva 30: Some attack examples
	Diapositiva 31: Some attack examples
	Diapositiva 32: The lifecycle of modern integrated circuits
	Diapositiva 33: VLSI Design Cycle
	Diapositiva 34: VLSI Design Cycle
	Diapositiva 35: VLSI Design Cycle
	Diapositiva 36: VLSI Design Cycle
	Diapositiva 37: VLSI Design Cycle
	Diapositiva 38: VLSI Design Cycle
	Diapositiva 39: VLSI Design Cycle
	Diapositiva 40: VLSI Design Cycle
	Diapositiva 41: VLSI Design Cycle
	Diapositiva 42: VLSI Design Cycle
	Diapositiva 43: VLSI Design Methodologies
	Diapositiva 44: VLSI Design Methodologies
	Diapositiva 45: VLSI Design Methodologies
	Diapositiva 46: Where hardware security issues come from?
	Diapositiva 47: VLSI Industry: Business Model trends
	Diapositiva 48: IC Design and Test Flow
	Diapositiva 49: Where are modern chips developed?
	Diapositiva 50: Fabless industry up to 33%
	Diapositiva 51: Can we Trust Hardware?
	Diapositiva 52: Can we Trust Hardware?
	Diapositiva 53: Can we Trust Hardware?
	Diapositiva 54: Can we Trust Hardware?
	Diapositiva 55: Can we Trust Hardware?
	Diapositiva 56: Security principles
	Diapositiva 57: What Does Secure Mean?
	Diapositiva 58: Typical Cycle in Securing a System
	Diapositiva 59: Some definitions
	Diapositiva 60: Hardware Threats
	Diapositiva 61: Where does security is required?
	Diapositiva 62: Embedded Systems Security/IoTs
	Diapositiva 63: Basic security: cryptography
	Diapositiva 64: Basic Cryptographic Scheme
	Diapositiva 65: Cryptanalysis
	Diapositiva 66: Cryptanalysis
	Diapositiva 67: Taxonomy of Side Channel Attacks
	Diapositiva 68: Fault Injection Attacks
	Diapositiva 69: Fault Injection Attacks
	Diapositiva 70: Fault Injection Attacks
	Diapositiva 71: Fault Injection Techniques: low cost
	Diapositiva 72: Fault Injection Techniques: low cost
	Diapositiva 73: Fault Injection Techniques: low cost
	Diapositiva 74: Fault Injection Techniques: medium to high cost
	Diapositiva 75: Fault Injection Attacks: the RSA example
	Diapositiva 76: Fault Injection Attacks: the RSA example
	Diapositiva 77: Fault Injection Attacks: the RSA example
	Diapositiva 78: Fault Injection Attacks: the RSA example
	Diapositiva 79: Fault Injection Attacks: the RSA example
	Diapositiva 80: Security features in RISC-V
	Diapositiva 81: RISC-V security: sw stack implementations
	Diapositiva 82: RISC-V security: sw stack implementations
	Diapositiva 83: RISC-V security: sw stack implementations
	Diapositiva 84: RISC-V security: instruction privileges
	Diapositiva 85: RISC-V security: Additional mechanisms
	Diapositiva 86: RISC-V security: Additional mechanisms
	Diapositiva 87: RISC-V security: limitations
	Diapositiva 88: Students assignments
	Diapositiva 89: References

